Abstract
Abstract
Background
Arterial hypertension has a direct association with endothelial dysfunction and major cardiovascular events. There is evidence showing the benefits of aerobic exercise on flow-mediated dilation (FMD) in hypertensive individuals but little is known about the effect of autonomic nervous system (ANS) activation on FMD of the brachial artery in response to different types of exercise in this specific population. This study aims to examine the effects of ANS activation on FMD of the brachial artery in response to exercise in hypertensive individuals following a session of different types of exercise including aerobic exercise (AE), resistance exercise (RE), or combined exercise (CE).
Methods
Thirty-nine hypertensive volunteers aged 35 to 55 years will be randomly assigned to two exercise sessions: AE (40 min on a cycle ergometer at 60% of HR reserve), RE (4 lower limb sets with 12 repetitions at 60% 1-RM for 40 min), or CE (RE for 20 min + AE for 20 min). Each exercise group will be randomized to receive either an α1-adrenergic blocker (doxazosin 0.05 mg/kg−1) or placebo. Ultrasound measurement of FMD is performed 10 min before and 10, 40, and 70 min after exercise. ANS activation is monitored using a Finometer and measurements are taken during 10 min before each FMD assessment. Arterial stiffness is assessed by pulse wave velocity (PWV) analysis using a Complior device.
Discussion
We expect to demonstrate the effect of ANS activation on FMD of the brachial artery in hypertensive individuals in response to different types of exercise. This study may give some insight on how to improve exercise prescription for hypertension management.
Trial registration
https://clinicaltrials.gov and ID "NCT04371757". Registered on May 1, 2020.
Funder
Brazil’s National Post-Doctoral Fellowship Program
Publisher
Springer Science and Business Media LLC
Subject
Pharmacology (medical),Medicine (miscellaneous)
Reference45 articles.
1. Gimbrone MA, García-Cardeña G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ Res. 2016;118(4):620–36. https://doi.org/10.1161/CIRCRESAHA.115.306301. PMID: 26892962.
2. Vanhoutte PM, Shimokawa H, Feletou M, Tang EH. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf). 2017;219(1):22–96. https://doi.org/10.1111/apha.12646. PMID: 26706498.
3. Soloviev MA, Kulakova NV, Semiglazova TA, Borodulina EV, Udut VV. Correction of endothelial dysfunction in patients with arterial hypertension. Bull Exp Biol Med. 2011;151(2):183–5. 22238745. https://doi.org/10.1007/s10517-011-1284-1.
4. Abebe W, Mozaffari M. Endothelial dysfunction in diabetes: potential application of circulating markers as advanced diagnostic and prognostic tools. EPMA J. 2010;1(1):32–45. 23199039. https://doi.org/10.1007/s13167-010-0012-7.
5. Iantorno M, Campia U, Di Daniele N, Nistico S, Forleo GB, Cardillo C, et al. Obesity, inflammation and endothelial dysfunction. J Biol Regul Homeost Agents. 2014;28(2):169–76. PMID: 25001649.