Numerical and Experimental Analysis to Develop a SB6/H3 High Containment Level Concrete Median Barrier

Author:

Jeong Yoseok,Lee Ilkeun,Lee Jaeha,Kim Kyeongjin,Min Geunhyeong,Kim WooSeokORCID

Abstract

AbstractAs the number of heavy vehicles on the road continues to increase, collisions involving heavy vehicles and concrete median barriers (CMB) occur more frequently than in the past. Consequently, there is a growing need for research into more stringent design standards and improvements to the current CMB and their performance under harsh conditions. High-performance CMB is required to in order to withstand such conditions. This paper presents the results of numerical simulations and full-scale field tests to develop a high-performance CMB. To facilitate the development of the high-performance CMB, the concept of a deformable CMB was applied to the rigid CMB. A new apparatus called the shock absorber composed of dowel bars surrounded by empty space were introduced to make the rigid CMB deformable. In order to prevent local failure at the top of the barrier from a sudden high increase in impact energy, the deformable CMB was strengthened by adding reinforcements and widening the top based on the results of numerical simulations. The full-scale field tests were conducted on the proposed deformable CMB and took into account three appraisal areas: (1) structural adequacy, (2) occupant risk, and (3) vehicle trajectory after collision. The results of these tests showed that the deformable CMB contained and redirected the vehicle without allowing it to penetrate or override the deformable CMB. No detached elements, fragmentation, or other debris from the barrier were present. Therefore, the proposed high-performance CMB fulfilled all of the requirements of the crash test guideline.

Funder

National Research Foundation of Korea

Korea Expressway Corporation

Publisher

Springer Science and Business Media LLC

Subject

Ocean Engineering,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3