Abstract
AbstractThe purpose of this study is to examine the effects of the seismic wave velocity on vertical displacement of a cable-stayed bridge’s deck under asynchronous excitation. The Quincy Bayview Bridge located in Illinois, USA, and four other generic bridges are selected for the study. Ten records obtained from earthquakes in US, Japan, and Taiwan are used as input for the seismic excitation in the time-history analysis. Two equations are proposed in this study to determine a critical seismic wave velocity that would produce the greatest vertical deck displacement. The critical wave velocity depends on the total length of the bridge, the fundamental period of the bridge, and the C-factor. The C-factor in this study is 0.72, which is based on analyzed results from the five selected bridges. The two equations and the C-factor are verified through application on two 3-span cable-stayed bridges studied previously by Nazmy and Abdel-Ghaffar. The proposed C-factor of 0.72 is recommended for use for typical 3-span cable-stayed bridges with a side-to-main span ratio of about 0.48. The methodology developed in the study, however, can be applied to any specific bridge to examine the excitation of the deck vertical displacement under the longitudinal seismic ground motion.
Funder
Natural Sciences and Engineering Research Council of Canada
Concordia University
Publisher
Springer Science and Business Media LLC
Subject
Ocean Engineering,Civil and Structural Engineering
Reference43 articles.
1. AASHTO. 1996. American Association of State Highway and Transportation Officials. Standard Specification for Highway Bridges, the 16th edition.
2. Abdel-Ghaffar A M 1991. Cable-stayed bridges under seismic action. Proceedings of the Seminar Cable—Stayed Bridges: Recent Development and Their Future, Yokohama, Japan.
3. Allam, S. M., & Datta, T. K. (2004). Seismic response of a cable-stayed bridge deck under multi-component non-stationary random ground motion. Earthquake Engineering and Structural Dynamics, 33, 375–393. https://doi.org/10.1002/eqe.357.
4. Aswathy, S., Kartha, U., & Mathai, A. (2013). Seismic pounding of bridges due to multi-support excitation with traveling wave. American Journal of Engineering Research (AJER), 4, 29–32.
5. Camara, F. (2018). Seismic behavior of cable-stayed bridges: a review. MOJ Civil Engineering, 4(3), 161–169.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献