Author:
Major Kelly M,Kirkwood Andrea E,Major Clinton S,McCreadie John W,Henley William J
Abstract
Abstract
This is the first in a series of experiments designed to characterize the Salt Plains National Wildlife Refuge (SPNWR) ecosystem in northwestern Oklahoma and to catalogue its microbial inhabitants. The SPNWR is the remnant of an ancient ocean, encompassing ~65 km2 of variably hypersaline flat land, fed by tributaries of the Arkansas River. Relative algal biomass (i.e., chlorophyll concentrations attributed to Chlorophyll-a-containing oxygenic phototrophs) and physical and chemical parameters were monitored at three permanent stations for a one-year period (July 2000 to July 2001) using a nested block design. Salient features of the flats include annual air temperatures that ranged from -10 to 40°C, and similar to other arid/semi-arid environments, 15–20-degree daily swings were common. Shade is absent from the flats system; intense irradiance and high temperatures (air and sediment surface) resulted in low water availability across the SPNWR, with levels of only ca. 15 % at the sediment surface. Moreover, moderate daily winds were constant (ca. 8–12 km h-1), sometimes achieving maximum speeds of up to 137 km h-1. Typical of freshwater systems, orthophosphate (PO4
3-) concentrations were low, ranging from 0.04 to <1 μM; dissolved inorganic nitrogen levels were high, but spatially variable, ranging from ca. 250–600 μM (NO3
- + NO2
-) and 4–166 μM (NH4
+). Phototroph abundance was likely tied to nutrient availability, with high-nutrient sites exhibiting high Chl-a levels (ca. 1.46 mg m-2). Despite these harsh conditions, the phototrophic microbial community was unexpectedly diverse. Preliminary attempts to isolate and identify oxygenic phototrophs from SPNWR water and soil samples yielded 47 species from 20 taxa and 3 divisions. Our data indicate that highly variable, extreme environments might support phototrophic microbial communities characterized by higher species diversity than previously assumed.
Publisher
Springer Science and Business Media LLC
Subject
Water Science and Technology,Aquatic Science,Ecology, Evolution, Behavior and Systematics,Microbiology
Reference32 articles.
1. Abed RMM, Garcia-Pichel F, Hernández-Mariné M: Polyphasic characterization of benthic, moderately halophilic, moderately thermophilic cyanobacteria with very thin trichomes and the proposal of Halomicronemaexcentricum gen. nov., sp. nov. Arch Microbiol. 2002, 177: 361-370. 10.1007/s00203-001-0390-2.
2. Anagnostidis K, Komarek J: Modern approach to the classification system of cyanophytes. 3. Oscillatoriales. Arch Hydrobiol Suppl. 1988, 80: 327-472.
3. Baalman RJ: Vegetation of the Salt Plains National Wildlife Refuge, Jet, Oklahoma. PhD Thesis. 1965, University of Oklahoma, Norman, OK, USA
4. Caton TM, Witte LR, Ngyuen HD, Buchheim JA, Buchheim MA, Schneegurt MA: Halotolerant aerobic heterotrophic bacteria from the Great Salt Plains of Oklahoma. Microb Ecol. 2004, 48: 449-462. 10.1007/s00248-004-0211-7.
5. Cox EJ: Identification of freshwater diatoms from live material. 1996, London, UK: Chapman & Hall
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献