Incorporating kernelized multi-omics data improves the accuracy of genomic prediction

Author:

Liang Mang,An Bingxing,Chang Tianpeng,Deng Tianyu,Du Lili,Li Keanning,Cao Sheng,Du Yueying,Xu Lingyang,Zhang Lupei,Gao Xue,Li Junya,Gao HuijiangORCID

Abstract

Abstract Background Genomic selection (GS) has revolutionized animal and plant breeding after the first implementation via early selection before measuring phenotypes. Besides genome, transcriptome and metabolome information are increasingly considered new sources for GS. Difficulties in building the model with multi-omics data for GS and the limit of specimen availability have both delayed the progress of investigating multi-omics. Results We utilized the Cosine kernel to map genomic and transcriptomic data as $${n}\times {n}$$ n × n symmetric matrix (G matrix and T matrix), combined with the best linear unbiased prediction (BLUP) for GS. Here, we defined five kernel-based prediction models: genomic BLUP (GBLUP), transcriptome-BLUP (TBLUP), multi-omics BLUP (MBLUP, $$\boldsymbol M=\mathrm{ratio}\times\boldsymbol G+(1-\mathrm{ratio})\times\boldsymbol T$$ M = ratio × G + ( 1 - ratio ) × T ), multi-omics single-step BLUP (mssBLUP), and weighted multi-omics single-step BLUP (wmssBLUP) to integrate transcribed individuals and genotyped resource population. The predictive accuracy evaluations in four traits of the Chinese Simmental beef cattle population showed that (1) MBLUP was far preferred to GBLUP (ratio = 1.0), (2) the prediction accuracy of wmssBLUP and mssBLUP had 4.18% and 3.37% average improvement over GBLUP, (3) We also found the accuracy of wmssBLUP increased with the growing proportion of transcribed cattle in the whole resource population. Conclusions We concluded that the inclusion of transcriptome data in GS had the potential to improve accuracy. Moreover, wmssBLUP is accepted to be a promising alternative for the present situation in which plenty of individuals are genotyped when fewer are transcribed.

Funder

National Natural Science Foundation of China

Program of National Beef Cattle and Yak Industrial Technology System

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3