Combining genetic markers, on-farm information and infrared data for the in-line prediction of blood biomarkers of metabolic disorders in Holstein cattle

Author:

Mota Lucio F. M.,Giannuzzi DianaORCID,Pegolo Sara,Toledo-Alvarado Hugo,Schiavon Stefano,Gallo Luigi,Trevisi Erminio,Arazi Alon,Katz Gil,Rosa Guilherme J. M.,Cecchinato Alessio

Abstract

Abstract Background Various blood metabolites are known to be useful indicators of health status in dairy cattle, but their routine assessment is time-consuming, expensive, and stressful for the cows at the herd level. Thus, we evaluated the effectiveness of combining in-line near infrared (NIR) milk spectra with on-farm (days in milk [DIM] and parity) and genetic markers for predicting blood metabolites in Holstein cattle. Data were obtained from 388 Holstein cows from a farm with an AfiLab system. NIR spectra, on-farm information, and single nucleotide polymorphisms (SNP) markers were blended to develop calibration equations for blood metabolites using the elastic net (ENet) approach, considering 3 models: (1) Model 1 (M1) including only NIR information, (2) Model 2 (M2) with both NIR and on-farm information, and (3) Model 3 (M3) combining NIR, on-farm and genomic information. Dimension reduction was considered for M3 by preselecting SNP markers from genome-wide association study (GWAS) results. Results Results indicate that M2 improved the predictive ability by an average of 19% for energy-related metabolites (glucose, cholesterol, NEFA, BHB, urea, and creatinine), 20% for liver function/hepatic damage, 7% for inflammation/innate immunity, 24% for oxidative stress metabolites, and 23% for minerals compared to M1. Meanwhile, M3 further enhanced the predictive ability by 34% for energy-related metabolites, 32% for liver function/hepatic damage, 22% for inflammation/innate immunity, 42.1% for oxidative stress metabolites, and 41% for minerals, compared to M1. We found improved predictive ability of M3 using selected SNP markers from GWAS results using a threshold of > 2.0 by 5% for energy-related metabolites, 9% for liver function/hepatic damage, 8% for inflammation/innate immunity, 22% for oxidative stress metabolites, and 9% for minerals. Slight reductions were observed for phosphorus (2%), ferric-reducing antioxidant power (1%), and glucose (3%). Furthermore, it was found that prediction accuracies are influenced by using more restrictive thresholds (−log10(P-value) > 2.5 and 3.0), with a lower increase in the predictive ability. Conclusion Our results highlighted the potential of combining several sources of information, such as genetic markers, on-farm information, and in-line NIR infrared data improves the predictive ability of blood metabolites in dairy cattle, representing an effective strategy for large-scale in-line health monitoring in commercial herds.

Funder

Ministero degli Affari Esteri e della Cooperazione Internazionale

European Union Next-GenerationEU

Università degli Studi di Padova

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3