Predicting the growth performance of growing-finishing pigs based on net energy and digestible lysine intake using multiple regression and artificial neural networks models

Author:

Wang Li,Hu Qile,Wang Lu,Shi Huangwei,Lai Changhua,Zhang ShuaiORCID

Abstract

Abstract Backgrounds Evaluating the growth performance of pigs in real-time is laborious and expensive, thus mathematical models based on easily accessible variables are developed. Multiple regression (MR) is the most widely used tool to build prediction models in swine nutrition, while the artificial neural networks (ANN) model is reported to be more accurate than MR model in prediction performance. Therefore, the potential of ANN models in predicting the growth performance of pigs was evaluated and compared with MR models in this study. Results Body weight (BW), net energy (NE) intake, standardized ileal digestible lysine (SID Lys) intake, and their quadratic terms were selected as input variables to predict ADG and F/G among 10 candidate variables. In the training phase, MR models showed high accuracy in both ADG and F/G prediction (R2ADG = 0.929, R2F/G = 0.886) while ANN models with 4, 6 neurons and radial basis activation function yielded the best performance in ADG and F/G prediction (R2ADG = 0.964, R2F/G = 0.932). In the testing phase, these ANN models showed better accuracy in ADG prediction (CCC: 0.976 vs. 0.861, R2: 0.951 vs. 0.584), and F/G prediction (CCC: 0.952 vs. 0.900, R2: 0.905 vs. 0.821) compared with the MR models. Meanwhile, the “over-fitting” occurred in MR models but not in ANN models. On validation data from the animal trial, ANN models exhibited superiority over MR models in both ADG and F/G prediction (P < 0.01). Moreover, the growth stages have a significant effect on the prediction accuracy of the models. Conclusion Body weight, NE intake and SID Lys intake can be used as input variables to predict the growth performance of growing-finishing pigs, with trained ANN models are more flexible and accurate than MR models. Therefore, it is promising to use ANN models in related swine nutrition studies in the future.

Funder

National Natural Science Foundation of China

Talent Development Program of China Agricultural University

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Animal Science and Zoology,Biochemistry,Food Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3