Abstract
Abstract
Background
Hyperpolarization enhances the sensitivity of nuclear magnetic resonance experiments by between four and five orders of magnitude. Several hyperpolarized sensor molecules have been introduced that enable high sensitivity detection of metabolism and physiological parameters. However, hyperpolarized magnetic resonance spectroscopy imaging (MRSI) often suffers from poor signal-to-noise ratio and spectral analysis is complicated by peak overlap. Here, we study measurements of extracellular pH (pHe) by hyperpolarized zymonic acid, where multiple pHe compartments, such as those observed in healthy kidney or other heterogeneous tissue, result in a cluster of spectrally overlapping peaks, which is hard to resolve with conventional spectroscopy analysis routines.
Methods
We investigate whether deep learning methods can yield improved pHe prediction in hyperpolarized zymonic acid spectra of multiple pHe compartments compared to conventional line fitting. As hyperpolarized 13C-MRSI data sets are often small, a convolutional neural network (CNN) and a multilayer perceptron (MLP) were trained with either a synthetic or a mixed (synthetic and augmented) data set of acquisitions from the kidneys of healthy mice.
Results
Comparing the networks’ performances compartment-wise on a synthetic test data set and eight real kidney data shows superior performance of CNN compared to MLP and equal or superior performance compared to conventional line fitting. For correct prediction of real kidney pHe values, training with a mixed data set containing only 0.5% real data shows a large improvement compared to training with synthetic data only. Using a manual segmentation approach, pH maps of kidney compartments can be improved by neural network predictions for voxels including three pH compartments.
Conclusion
The results of this study indicate that CNNs offer a reliable, accurate, fast and non-interactive method for analysis of hyperpolarized 13C MRS and MRSI data, where low amounts of acquired data can be complemented to achieve suitable network training.
Funder
Deutsche Forschungsgemeinschaft
H2020 Future and Emerging Technologies
Technische Universität München
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Quo Vadis Hyperpolarized 13C MRI?;Zeitschrift für Medizinische Physik;2023-12