Author:
Borau Carlos,Polacheck William J,Kamm Roger D,García-Aznar José Manuel
Abstract
Abstract
Background
Cells respond to a variety of external stimuli regulated by the environment conditions. Mechanical, chemical and biological factors are of great interest and have been deeply studied. Furthermore, mathematical and computational models have been rapidly growing over the past few years, permitting researches to run complex scenarios saving time and resources. Usually these models focus on specific features of cell migration, making them only suitable to study restricted phenomena.
Methods
Here we present a versatile finite element (FE) cell-scale 3D migration model based on probabilities depending in turn on ECM mechanical properties, chemical, fluid and boundary conditions.
Results
With this approach we are able to capture important outcomes of cell migration such as: velocities, trajectories, cell shape and aspect ratio, cell stress or ECM displacements.
Conclusions
The modular form of the model will allow us to constantly update and redefine it as advancements are made in clarifying how cellular events take place.
Publisher
Springer Science and Business Media LLC
Reference48 articles.
1. Lauffenburger DA, Horwitz AF: Cell migration: a physically integrated molecular process. Cell 1996,84(3):359–369. 10.1016/S0092-8674(00)81280-5
2. Cukierman E, Pankov R, Yamada KM: Cell interactions with three-dimensional matrices. Curr Opin Cell Biol 2002,14(5):633–639. 10.1016/S0955-0674(02)00364-2
3. Even-Ram S, Yamada KM: Cell migration in 3D matrix. Curr Opin Cell Biol 2005,17(5):524–532. 10.1016/j.ceb.2005.08.015
4. Zaman MH, Trapani LM, Siemeski A, MacKellar D, Gong H, Kamm RD, Wells A, Lauffenburger DA, Matsudaira P: Migration of tumor cells in 3D matrices is governed by matrix stiffness along with cell-matrix adhesion and proteolysis. Proc Natl Acad Sci U S A 2006,103(37):13897–13897.
5. Lo CM, Wang HB, Dembo M, Wang YL: Cell movement is guided by the rigidity of the substrate. Biophys J 2000,79(1):144–152. 10.1016/S0006-3495(00)76279-5
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献