Probabilistic Voxel-Fe model for single cell motility in 3D

Author:

Borau Carlos,Polacheck William J,Kamm Roger D,García-Aznar José Manuel

Abstract

Abstract Background Cells respond to a variety of external stimuli regulated by the environment conditions. Mechanical, chemical and biological factors are of great interest and have been deeply studied. Furthermore, mathematical and computational models have been rapidly growing over the past few years, permitting researches to run complex scenarios saving time and resources. Usually these models focus on specific features of cell migration, making them only suitable to study restricted phenomena. Methods Here we present a versatile finite element (FE) cell-scale 3D migration model based on probabilities depending in turn on ECM mechanical properties, chemical, fluid and boundary conditions. Results With this approach we are able to capture important outcomes of cell migration such as: velocities, trajectories, cell shape and aspect ratio, cell stress or ECM displacements. Conclusions The modular form of the model will allow us to constantly update and redefine it as advancements are made in clarifying how cellular events take place.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Biomechanics of cells and subcellular components: A comprehensive review of computational models and applications;International Journal for Numerical Methods in Biomedical Engineering;2021-08-23

2. A mechanobiological model to study upstream cell migration guided by tensotaxis;Biomechanics and Modeling in Mechanobiology;2020-01-31

3. Roles of Interactions Between Cells and Extracellular Matrices for Cell Migration and Matrix Remodeling;Multi-scale Extracellular Matrix Mechanics and Mechanobiology;2019-07-13

4. Mathematical Modeling Tools and Software for BME Applications;Encyclopedia of Biomedical Engineering;2019

5. Computational Cell-Based Modeling and Visualization of Cancer Development and Progression;Lecture Notes in Computational Vision and Biomechanics;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3