What do integrated STEM projects look like in middle school and high school classrooms? A systematic literature review of empirical studies of iSTEM projects

Author:

McLure Felicity I.ORCID,Tang Kok-Sing,Williams P. John

Abstract

AbstractThe past 20 years has seen a growing focus on the integration of Science, Technology, Engineering and Mathematics (iSTEM) disciplines in schools to provide students with authentic experiences in solving real-world problems. A frequently stated aim for iSTEM projects has been increasing engagement and interest in pursuing STEM subjects in senior high school and tertiary studies. In order to better understand the iSTEM projects’ landscape in school classes, this systematic literature review analysed empirical studies of integrated STEM projects carried out in secondary schools to answer the following questions: What are the characteristics of the projects described and to what extent do these projects reflect characteristics of effective STEM projects; and to what extent does research into iSTEM projects in classrooms investigate specific methods of integration of STEM domains? Thirty-five peer-reviewed publications were identified from database searches that met the following inclusion criteria: (a) integrating two or more of the STEM areas, (b) middle/high school education and (c) explicitly describing the research intervention. The review revealed a diversity of iSTEM approaches in the literature, with Engineering and Science, particularly Physics, the most commonly integrated fields. Concerns are raised about the degree to which projects are relevant to students and their context and address the diversity found within student cohorts. A gap was found in the literature in detailing how teachers and students enact integration of STEM skills in these projects.

Publisher

Springer Science and Business Media LLC

Subject

Education

Reference57 articles.

1. ACARA. (2022) Technologies. Retrieved September 2, 2022, from https://www.australiancurriculum.edu.au/f-10-curriculum/technologies/

2. Arshad, A. Y. M., Halim, L., & Nasri, N. M. (2021). A systematic review: Issues in implementation of integrated STEM education. Turkish Journal of Computer and Mathematics Education, 12(9), 1124–1133. https://doi.org/10.17762/turcomat.v12i9.3418

3. Baldinger, E. D., Staats, S., Covington-Clarkson, L. M., Gullickson, E., Norman, F., & Akoto, B. (2021). In returning voice to the silent M: A review of conceptions of mathematics in integrated STEM education. In J. Anderson & Y. Li (Eds.), Integrated approaches to STEM education: An international perspective (pp. 67–90). Springer.

4. Barrett, B. S., Moran, A. L., & Woods, J. E. (2014). Meteorology meets engineering: an interdisciplinary STEM module for middle and early secondary school students. International Journal of STEM Education, 1(1), Article 6. https://doi.org/10.1186/2196-7822-1-6

5. Brotman, J. S., & Moore, F. M. (2008). Girls and science: A review of four themes in the science education literature. Journal of Research in Science Teaching, 45(9), 971–1002. https://doi.org/10.1002/tea.20241

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3