Automated harvesting by a dual-arm fruit harvesting robot

Author:

Yoshida TakeshiORCID,Onishi Yuki,Kawahara Takuya,Fukao Takanori

Abstract

AbstractIn this study, we propose a method to automate fruit harvesting with a fruit harvesting robot equipped with robotic arms. Given the future growth of the world population, food shortages are expected to accelerate. Since much of Japan’s agriculture is dependent on imports, it is expected to be greatly affected by this upcoming food shortage. In recent years, the number of agricultural workers in Japan has been decreasing and the population is aging. As a result, there is a need to automate and reduce labor in agricultural work using agricultural machinery. In particular, fruit cultivation requires a lot of manual labor due to the variety of orchard conditions and tree shapes, causing mechanization and automation to lag behind. In this study, a dual-armed fruit harvesting robot was designed and fabricated to reach most of the fruits on joint V-shaped trellis that was cultivated and adjusted for the robot. To harvest the fruit, the fruit harvesting robot uses sensors and computer vision to detect and estimate the position of the fruit and then inserts end-effectors into the lower part of the fruit. During this process, there is a possibility of collision within the robot itself or with other fruits depending on the position of the fruit to be harvested. In this study, inverse kinematics and a fast path planning method using random sampling is used to harvest fruits with robot arms. This method makes it possible to control the robot arms without interfering with the fruit or the other robot arm by considering them as obstacles. Through experiments, this study showed that these methods can be used to detect pears and apples outdoors and automatically harvest them using the robot arms.

Funder

Bio-oriented Technology Research Advancement Institution

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering,Instrumentation,Modeling and Simulation

Reference30 articles.

1. Nations U (2019) World population prospects 2019: highlights. https://population.un.org/wpp/Publications/Files/WPP2019_Highlights.pdf. Accessed 26 Feb 2022

2. Food, of the United Nations AO (2018) The future of food and agriculture—alternative pathways to 2050. https://www.fao.org/3/CA1553EN/ca1553en.pdf. Accessed 26 Feb 2022

3. Ministry of Agriculture F, Fisheries (2021) Food Balance sheet. (In Japanese). https://www.maff.go.jp/j/tokei/kouhyou/zyukyu/attach/pdf/index-1.pdf Accessed 26 Feb 2022

4. Ministry of Agriculture F, Fisheries (2021) Overview of the 2020 census of agriculture and forestry. (In Japanese). https://www.maff.go.jp/j/press/tokei/census/attach/pdf/210427-3.pdf Accessed 26 Feb 2022

5. Kusaba S (2017) Integration of the tree form and machinery. Farming Mech 3189:5–9 (In Japanese)

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3