Information presentation method for teleoperated robots to support the multifaceted understanding of fire sites

Author:

Tamura YoshihiroORCID,Amano Hisanori,Ota Jun

Abstract

AbstractAlthough the overall number of fires is decreasing, the number of special fires as buildings become larger, taller, and deeper and fires and spills in hazardous materials facilities such as petroleum complexes is on the rise and ensuring the safety of firefighters has become a problem. The use of teleoperated firefighting robots is expected to be a solution to this problem. It is important to be able to operate the robot well, recognize the environment, and make decisions on what actions to take to perform the firefighting more effectively. This is closely related to the design of human machine interface (HMI) for teleoperated robots, but much of the research on HMI for teleoperated robots is concerned with how to operate the robot and how to present the information that is needed for operation. In addition, as the overall number of fires is decreasing, young firefighters' (novices’) lack of experience in firefighting has become a problem. Therefore, teleoperated firefighting robots are required to have the HMI that enables supports to recognize the environment and make decisions in firefighting. This study presents an information presentation method that is based on the control mode in the contextual control model (COCOM) to ensure that novices can have multifaceted perspectives during reconnaissance and attenuation like experienced firefighters (experts). The effectiveness of this method is confirmed by 12 firefighters. As a result, this study confirms that the information presentation is designed considering the control mode in the COCOM, and it improves the score from multiple perspectives. The findings of this study will contribute to the future development of teleoperated firefighting robots.

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering,Instrumentation,Modeling and Simulation

Reference33 articles.

1. Fire and Disaster Management Agency (2011) FY2011 White Paper on Firefighting. https://www.fdma.go.jp/publication/hakusho/h23/. Accessed 16 May 2021

2. New Energy and Industrial Technology Development Organization (NEDO) (2014) White Paper on Robot 2014. Chapter 5. https://www.nedo.go.jp/content/100563899.pdf. Accessed 16 May 2021

3. Krotkov E, Hackett D, Jackel L, Perschbacher M, Pippine J, Strauss J, Pratt G, Orlowski C (2017) The DARPA robotics challenge finals: results and perspectives. J Field Robot 34(2):229–240

4. Asada M (2020) Rethinking autonomy of humans and robots. J Rob Soc Jpn 38(1):7–12 (Japanese)

5. Tadokoro S (2019) Disaster robotics result from the ImPACT tough robotics challenge. Springer, Berlin

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3