Basic study of sensorless path tracking control based on the musculoskeletal potential method

Author:

Kinjo Yoshihiro,Matsutani Yuki,Tahara Kenji,Kino HitoshiORCID

Abstract

AbstractIn a musculoskeletal system, the musculoskeletal potential method utilizes the potential property generated by the internal force between muscles; posture control can be achieved by the step input of muscular tension balancing at the desired posture. The remarkable aspect of this method is that neither sensory feedback nor complicated real-time calculation is required at all. However, previous studies addressed only point-to-point control as motion control. In other words, with the focus on the convergence to the desired posture, path tracking has not been discussed. Extending the previous studies, this paper proposes a path tracking control based on a sensorless feedforward approach. The proposed method first finds the optimal set of muscular forces that can form the potential field to the desired potential shape realizing the desired path; next, inputting the obtained muscular forces into the system achieves path tracking. For verification, this paper demonstrates a case study of a musculoskeletal system with two joints and six muscles. In this case study, a constrained nonlinear programming method is used to find the optimal muscular force, and the path trackability is verified by numerical simulation.

Funder

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence,Control and Optimization,Mechanical Engineering,Instrumentation,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Proposal of Feedforward Trajectory Control with Iterative Learning for a Musculoskeletal System;2024 IEEE 18th International Conference on Advanced Motion Control (AMC);2024-02-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3