Evaluation of stability of swipe gesture authentication across usage scenarios of mobile device

Author:

Ellavarason Elakkiya,Guest Richard,Deravi Farzin

Abstract

Abstract Background User interaction with a mobile device predominantly consists of touch motions, otherwise known as swipe gestures, which are used as a behavioural biometric modality to verify the identity of a user. Literature reveals promising verification accuracy rates for swipe gesture authentication. Most of the existing studies have considered constrained environment in their experimental set-up. However, real-life usage of a mobile device consists of several unconstrained scenarios as well. Thus, our work aims to evaluate the stability of swipe gesture authentication across various usage scenarios of a mobile device. Methods The evaluations were performed using state-of-the-art touch-based classification algorithms—support vector machine (SVM), k-nearest neighbour (kNN) and naive Bayes—to evaluate the robustness of swipe gestures across device usage scenarios. To simulate real-life behaviour, multiple usage scenarios covering stationary and dynamic modes are considered for the analysis. Additionally, we focused on analysing the stability of verification accuracy for time-separated swipes by performing intra-session (acquired on the same day) and inter-session (swipes acquired a week later) comparisons. Finally, we assessed the consistency of individual features for horizontal and vertical swipes using a statistical method. Results Performance evaluation results indicate impact of body movement and environment (indoor and outdoor) on the user verification accuracy. The results reveal that for a static user scenario, the average equal error rate is 1%, and it rises significantly for the scenarios involving any body movement—caused either by user or the environment. The performance evaluation for time-separated swipes showed better verification accuracy rate for swipes acquired on the same day compared to swipes separated by a week. Finally, assessment on feature consistency reveal a set of consistent features such as maximum slope, standard deviation and mean velocity of second half of stroke for both horizontal and vertical swipes. Conclusions The performance evaluation of swipe-based authentication shows variation in verification accuracy across different device usage scenarios. The obtained results challenge the adoption of swipe-based authentication on mobile devices. We have suggested ways to further achieve stability through specific template selection strategies. Additionally, our evaluation has established that at least 6 swipes are needed in enrolment to achieve acceptable accuracy. Also, our results conclude that features such as maximum slope and standard deviation are the most consistent features across scenarios.

Publisher

Springer Science and Business Media LLC

Subject

Computer Science Applications,Signal Processing

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dynamic swipe gestures based Continuous Authentication using similarity learning;Proceedings of the 7th International Conference on Networking, Intelligent Systems and Security;2024-04-18

2. VCSR-AβPSO: A Hybrid Feature Selection for Enhanced Android Scrolling Scenario Recognition in High-Dimensional Imbalanced Data;2024 5th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT);2024-03-29

3. A survey of human-computer interaction (HCI) & natural habits-based behavioural biometric modalities for user recognition schemes;Pattern Recognition;2023-07

4. Swipe gestures for user authentication in smartphones;Journal of Information Security and Applications;2023-05

5. Using Machine Learning for Dynamic Authentication in Telehealth: A Tutorial;Sensors;2022-10-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3