Author:
Bajpai Prabodh Kumar,Weiss Harel,Dvir Gony,Hanin Nir,Wasserstrom Haggai,Barazani Oz
Abstract
Abstract
Background
The aridity gradient in the eastern Mediterranean offers an opportunity to investigate intra-specific genetic differentiation and local adaptation in plant populations. Here we used genetic (FST) and quantitative trait (PST) differentiation to assess local adaptation among three natural populations of Eruca sativa (Brassicaceae) distributed along a climatic range representing desert, semi-arid and Mediterranean habitats.
Results
Amplified fragment length polymorphism (AFLP) analysis revealed high genetic diversity in each population, but low genetic differentiation between populations and relatively high gene flow. Further phenotypic evaluation in a common garden experiment (conduced in a Mediterranean habitat) showed clear differences in phenological traits among populations (day of flowering and duration of the reproductive stage), shoot and root biomass, as well as fitness-related traits (total number of fruits and total seed weight). FST–PST comparison showed that PST values of the phenological traits, as well as below- and above-ground biomass and fitness-related traits, were higher than the FST values.
Conclusions
Overall, our results support the identification of genotypic and phenotypic differentiation among populations of E. sativa. Furthermore, the FST–PST comparison supports the hypothesis that these were subjected to past diversifying selection. Thus, the results clearly demonstrate adaptive divergence among populations along an aridity gradient, emphasize the ecological value of early flowering time in arid habitats, and contribute to our understanding of the possible impact of climate change on evolutionary processes in plant populations.
Publisher
Springer Science and Business Media LLC
Reference60 articles.
1. Clausen J, Keck DD, Hiesey WM. Experimental studies on the nature of species. I. Effect of varied environments on western North American plants. Washington, DC: Carnegie Institution of Washington; 1940.
2. Dudley SA, Schmitt J. Genetic differentiation in morphological responses to simulated foliage shade between populations of Impatiens capensis from open and woodland sites. Funct Ecol. 1995;9:655–66.
3. Schlichting CD. The evolution of phenotypic plasticity in plants. Annu Rev Ecol Syst. 1986;17:667–93.
4. Volis S, Yakubov B, Shulgina I, Ward D, Mendlinger S. Distinguishing adaptive from nonadaptive genetic differentiation: comparison of QST and FST at two spatial scales. Heredity. 2005;95:466–75.
5. Daru BH, Kling MM, Meineke EK, van Wyk AE. Temperature controls phenology in continuously flowering Protea species of subtropical Africa. Appl Plant Sci. 2019;7:e1232.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献