Abstract
Abstract
Background
Evolution of reproductive isolation is an important process, generating biodiversity and driving speciation. To better understand this process, it is necessary to investigate factors underlying reproductive isolation through various approaches but also in various taxa. Previous studies, mainly focusing on diploid animals, supported the prevalent view that reproductive barriers evolve gradually as a by-product of genetic changes accumulated by natural selection by showing a positive relationship between the degree of reproductive isolation and genetic distance. Haplodiploid animals are expected to generate additional insight into speciation, but few studies investigated the prevalent view in haplodiploid animals. In this study, we investigate whether the relationship also holds in a haplodiploid spider mite, Amphitetranychus viennensis (Zacher).
Results
We sampled seven populations of the mite in the Palaearctic region, measured their genetic distance (mtDNA) and carried out cross experiments with all combinations. We analyzed how lack of fertilization rate (as measure of prezygotic isolation) as well as hybrid inviability and hybrid sterility (as measures of postzygotic isolation) varies with genetic distance. We found that the degree of reproductive isolation varies among cross combinations, and that all three measures of reproductive isolation have a positive relationship with genetic distance. Based on the mtDNA marker, lack of fertilization rate, hybrid female inviability and hybrid female sterility were estimated to be nearly complete (99.0–99.9% barrier) at genetic distances of 0.475–0.657, 0.150–0.209 and 0.145–0.210, respectively. Besides, we found asymmetries in reproductive isolation.
Conclusions
The prevalent view on the evolution of reproductive barriers is supported in the haplodiploid spider mite we studied here. According to the estimated minimum genetic distance for total reproductive isolation in parent population crosses in this study and previous work, a genetic distance of 0.15–0.21 in mtDNA (COI) appears required for speciation in spider mites. Variations and asymmetries in the degree of reproductive isolation highlight the importance of reinforcement of prezygotic reproductive isolation through incompatibility and the importance of cytonuclear interactions for reproductive isolation in haplodiploid spider mites.
Funder
Japan Society for the Promotion of Science
Publisher
Springer Science and Business Media LLC
Reference62 articles.
1. Howard DJ, Berlocher SH, editors. Endless forms: species and speciation. New York: Oxford University Press; 1998.
2. Coyne JA, Orr HA. Speciation. 1st ed. Sunderland, Mass: Sinauer Associates, Inc.; 2004.
3. de la Filia AG, Bain SA, Ross L. Haplodiploidy and the reproductive ecology of Arthropods. Curr Opin Insect Sci. 2015;9:36–43.
4. Price CSC, Kim CH, Gronlund CJ, Coyne JA. Cryptic reproductive isolation in the Drosophila simulans species complex. Evolution. 2001;55:81–92.
5. Nosil P, Crespi BJ. Ecological divergence promotes the evolution of cryptic reproductive isolation. Proc R Soc B Biol Sci. 2006;273:991–7.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献