Author:
Kumala Lars,Thomsen Malte,Canfield Donald E.
Abstract
Abstract
Background
The aquiferous system in sponges represents one of the simplest circulatory systems used by animals for the internal uptake and distribution of oxygen and metabolic substrates. Its modular organization enables sponges to metabolically scale with size differently than animals with an internal circulatory system. In this case, metabolic rate is typically limited by surface to volume constraints to maintain an efficient supply of oxygen and food. Here, we consider the linkeage between oxygen concentration, the respiration rates of sponges and sponge size.
Results
We explored respiration kinetics for individuals of the demosponge Halichondria panicea with varying numbers of aquiferous modules (nmodules = 1–102). From this work we establish relationships between the sponge size, module number, maximum respiration rate (Rmax) and the half-saturation constant, Km, which is the oxygen concentration producing half of the maximum respiration rate, Rmax. We found that the nmodules in H. panicea scales consistently with sponge volume (Vsp) and that Rmax increased with sponge size with a proportionality > 1. Conversly, we found a lack of correlation between Km and sponge body size suggesting that oxygen concentration does not control the size of sponges.
Conclusions
The present study reveals that the addition of aquiferous modules (with a mean volume of 1.59 ± 0.22 mL) enables H. panicea in particular, and likely demosponges in general, to grow far beyond constraints limiting the size of their component modules and independent of ambient oxygen levels.
Funder
Villum Fonden
University Library of Southern Denmark
Publisher
Springer Science and Business Media LLC
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献