Author:
Zhang Qi,Xu Jiahui,Warren Alan,Yang Ran,Shen Zhuo,Yi Zhenzhen
Abstract
Abstract
Background
Although phylogenomic analyses are increasingly used to reveal evolutionary relationships among ciliates, relatively few nuclear protein-coding gene markers have been tested for their suitability as candidates for inferring phylogenies within this group. In this study, we investigate the utility of the heat-shock protein 90 gene (Hsp90) as a marker for inferring phylogenetic relationships among hypotrich ciliates.
Results
A total of 87 novel Hsp90 gene sequences of 10 hypotrich species were generated. Of these, 85 were distinct sequences. Phylogenetic analyses based on these data showed that: (1) the Hsp90 gene amino acid trees are comparable to the small subunit rDNA tree for recovering phylogenetic relationships at the rank of class, but lack sufficient phylogenetic signal for inferring evolutionary relationships at the genus level; (2) Hsp90 gene paralogs are recent and therefore unlikely to pose a significant problem for recovering hypotrich clades; (3) definitions of some hypotrich orders and families need to be revised as their monophylies are not supported by various gene markers; (4) The order Sporadotrichida is paraphyletic, but the monophyly of the “core” Urostylida is supported; (5) both the subfamily Oxytrichinae and the genus Urosoma seem to be non-monophyletic, but monophyly of Urosoma is not rejected by AU tests.
Conclusions
Our results for the first time demonstrate that the Hsp90 gene is comparable to SSU rDNA for recovering phylogenetic relationships at the rank of class, and its paralogs are unlikely to pose a significant problem for recovering hypotrich clades. This study shows the value of careful gene marker selection for phylogenomic analyses of ciliates.
Funder
National Natural Science Foundation of China
Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology
Guangdong MEPP Fund
Publisher
Springer Science and Business Media LLC
Subject
Ecology, Evolution, Behavior and Systematics
Reference83 articles.
1. Gao F, Warren A, Zhang Q, Gong J, Miao M, Sun P, et al. The all-data-based evolutionary hypothesis of ciliated protists with a revised classification of the phylum Ciliophora (Eukaryota, Alveolata). Sci Rep. 2016;6:24874.
2. Hu X, Lin X, Song W. Ciliates atlas: species found in the South China Sea. Beijing: Science Press; 2019.
3. Yi Z, Huang L, Yang R, Lin X, Song W. Actin evolution in ciliates (Protist, Alveolata) is characterized by high diversity and three duplication events. Mol Phylogenet Evol. 2016;96:45–54.
4. Zhao Y, Yi Z, Warren A, Song W. Species delimitation for the molecular taxonomy and ecology of the widely distributed microbial eukaryote genus Euplotes (Alveolata, Ciliophora). P Roy Soc B-Biol Sci. 2018;285:20172159.
5. Wang YR, Jiang YH, Liu YQ, Li Y, Katz LA, Gao F, Yan Y. Comparative studies on the polymorphism and copy number variation of mtSSU rDNA in ciliates (Protista, Ciliophora): implications for phylogenetic, environmental, and ecological research. Microorganisms. 2020;8(3):316.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献