Abstract
Abstract
Background
There is sufficient epidemiological and biological evidence of increased human susceptibility to viral pathogens such as Middle East respiratory syndrome coronavirus, respiratory syncytial virus, human metapneumovirus and influenza virus, in cold weather. The pattern of outbreak of the coronavirus disease 2019 (COVID-19) in China during the flu season is further proof that meteorological conditions may potentially influence the susceptibility of human populations to coronaviruses, a situation that may become increasingly evident as the current global pandemic of COVID-19 unfolds.
Main body
A very rapid spread and high mortality rates have characterized the COVID-19 pandemic in countries north of the equator where air temperatures have been seasonally low. It is unclear if the currently high rates of COVID-19 infections in countries of the northern hemisphere will wane during the summer months, or if fewer people overall will become infected with COVID-19 in countries south of the equator where warmer weather conditions prevail through most of the year. However, apart from the influence of seasons, evidence based on the structural biology and biochemical properties of many enveloped viruses similar to the novel severe acute respiratory syndrome coronavirus 2 or SARS-CoV-2 (aetiology of COVID-19), support the higher likelihood of the latter of the two outcomes. Other factors that may potentially impact the rate of virus spread include the effectiveness of infection control practices, individual and herd immunity, and emergency preparedness levels of countries.
Conclusion
This report highlights the potential influence of weather conditions, seasons and non-climatological factors on the geographical spread of cases of COVID-19 across the globe.
Publisher
Springer Science and Business Media LLC
Subject
Infectious Diseases,Public Health, Environmental and Occupational Health,General Medicine
Reference10 articles.
1. Wu C, Liu Y, Yang Y, Zhang P, Zhong W, Wang Y, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm Sin B. 2020. https://doi.org/10.1016/j.apsb.2020.02.008 In Press. Accessed 12 May 2020.
2. Neuman BW, Kiss G, Kunding AH, Bhella D, Baksh MF, Connelly S, et al. A structural analysis of M protein in coronavirus assembly and morphology. J Struct Biol. 2011;174(1):11–22.
3. World Health Organization (WHO). Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19), 2020. https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf. Accessed 12 May 2020.
4. Cyranoski D. Mystery deepens over animal source of coronavirus. Nature. 2020;579(7797):18–9.
5. European Centre for Disease Prevention and Control (ECDC). COVID-19 situation update worldwide. https://www.ecdc.europa.eu/en/geographical-distribution-2019-ncov-cases. Accessed 12 May 2020.
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献