Low dose of continuous – wave microwave irradiation did not cause temperature increase in muscles tissue adjacent to titanium alloy implants – an animal study

Author:

Ye Dongmei,Xu Yiming,Fu Tengfei,Zhang Han,Feng Xianxuan,Wang Gang,Jiang Lan,Bai Yuehong

Abstract

Abstract Background Research studies on the influence of radiofrequency electromagnetic radiation on implants in vitro have failed to investigate temperature changes in the tissues adjacent to the implants under microwave therapy. We therefore, used a rabbit model in an effort to determine the impact of microwave therapy on temperature changes in tissues adjacent to the titanium alloy implants and the safety profile thereof. Methods Titanium alloy internal fixation plates were implanted in New Zealand rabbits in the middle of femur. Microwave therapy was performed by a 2450 MHz microwave generator 3 days after the surgery. Temperature changes of muscles adjacent to the implants were recorded under exposure to dose-gradient microwave radiation from 20w to 60w. Results Significant difference between control and microwave treatment group at peak temperatures (Tpeak) and temperature gap (Tgap= Tpeak-Tvally) were observed in deep muscles (Tpeak, 41.63 ± 0.21°C vs. 44.40 ± 0.17°C, P < 0.01; Tgap, 5.33 ± 0.21°C vs. 8.10 ± 0.36°C, P < 0.01) and superficial muscles (Tpeak, 41.53 ± 0.15°C vs. 42.03 ± 0.23°C, P = 0.04; Tgap, 5.23 ± 0.21°C vs. 5.80 ± 0.17°C, P = 0.013) under 60 w, and deep muscles (Tpeak, 40.93 ± 0.25°C vs. 41.87 ± 0.23°C, P = 0.01; Tgap, 4.73 ± 0.20°C vs. 5.63 ± 0.35°C, P = 0.037) under 50w, but not under 20, 30 and 40w. Conclusion Our results suggest that low-dose (20w-40w) continuous-wave microwave irradiation delivered by a 2450 MHz microwave generator might be a promising treatment for patients with titanium alloy internal fixation, as it did not raise temperature in muscle tissues adjacent to the titanium alloy implant.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Rheumatology

Reference49 articles.

1. Dewhirst MW, Viglianti BL, Lora-Michiels M, Hanson M, Hoopes PJ: Basic principles of thermal dosimetry and thermal thresholds for tissue damage from hyperthermia. Int J Hyperthermia. 2003, 19: 267-294. 10.1080/0265673031000119006.

2. Wyper DJ, McNiven DR: The effect of microwave therapy upon muscle blood flow in man. Br J Sports Med. 1976, 10: 19-21. 10.1136/bjsm.10.1.19.

3. Sekins KM, Lehmann JF, Esselman P, Dundore D, Emery AF, deLateur BJ, Nelp WB: Local muscle blood flow and temperature responses to 915 MHz diathermy as simultaneously measured and numerically predicted. Arch Phys Med Rehabil. 1984, 65: 1-7.

4. Yatvin MB: The influence of membrane lipid composition and procaine on hyperthermic death of cells. Int J Radiat Biol Relat Stud Phys Chem Med. 1977, 32: 513-521. 10.1080/09553007714551301.

5. Lehmann JF, Guy AW, Stonebridge JB, Warren CG, DeLateur BJ: Temperature distribution produced in models by three microwave applicators at 433.92 megahertz. Arch Phys Med Rehabil. 1975, 56: 145-151.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3