Role of pulsatile growth hormone (GH) secretion in the regulation of lipolysis in fasting humans

Author:

Goldenberg N.,Horowitz J. F.,Gorgey A.,Sakharova A.,Barkan A. L.ORCID

Abstract

Abstract Background The increase in growth hormone (GH) secretion during a prolonged fast stimulates lipolytic rate, thereby augmenting the mobilization of endogenous energy at a time when fuel availability is very low. Study aim To identify the specific component of GH secretory pattern responsible for the stimulation of lipolytic rate during fasting in humans. Study protocol We measured lipolytic rate (using stable isotope dilution technique) after an overnight fast in 15 young, healthy, non-obese subjects (11 men and 4 women), and again on four separate occasions after a 59 h fast. These four prolonged fasting trials differed only by the contents of an infusion solution provided throughout the 59 h fasting period. Subjects were infused either with normal saline (“Control”; n = 15) or with graded doses of a GH Releasing Hormone Receptor Antagonist (GHRHa):10 μg/kg/h (“High”; n = 15), 1 μg /kg/h (“Medium”; n = 8), or 0.5 μg /kg/h (“Low”; n = 6). Results As expected, the 59 h fast completely suppressed plasma insulin levels and markedly increased endogenous GH concentrations (12 h vs 59 h Fast; p = 0.0044). Administration of GHRHa induced dose-dependent reduction in GH concentrations in response to the 59 h fast (p < 0.05). We found a strong correlation between the rate of lipolysis and GH mean peak amplitude (R = 0.471; p = 0.0019), and total GH pulse area under the curve (AUC) (R = 0.49; p = 0.0015), but not the GH peak frequency (R = 0.044; p = 0.8) or interpulse GH concentrations (R = 0.25; p = 0.115). Conclusion During prolonged fasting (i.e., 2–3 days), when insulin secretion is abolished, the pulsatile component of GH secretion becomes a key metabolic regulator of the increase in lipolytic rate.

Funder

U.S. Department of Veterans Affairs

National Institutes of Health

Genentech

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3