Rhenium solubility and speciation in aqueous fluids at high temperature and pressure

Author:

Mysen BjornORCID

Abstract

AbstractIn order to characterize rhenium transport via infiltration of fluids in the Earth's interior, the solubility and solution mechanisms of ReO2 in aqueous fluids were determined to 900 °C and about 1710 MPa by using an externally–heated hydrothermal diamond anvil cell. In order to shed light on how Re solubility and solution mechanisms in aqueous fluids can be affected by interaction of Re with other solutes, compositions ranged from the comparatively simple ReO2–H2O system to compositionally more complex Na2O–ReO2–SiO2–H2O fluids. Fluids in the ReO2–SiO2–H2O, SiO2–H2O, Na2O–SiO2–H2O, and Na2O–ReO2–H2O systems also were examined. The presence of Na2O enhances the ReO2 solubility so that in Na2O–ReO2–H2O fluids, for example, Re solubility is increased by a factor of 10–15 compared with the Re solubility in Na2O-free ReO2–H2O fluids. The SiO2 component in ReO2–SiO2–H2O causes reduction of ReO2 solubility compared with ReO2–H2O fluids. The ReO2 solubility in the Na-bearing Na2O–ReO2–SiO2–H2O fluids is greater than that in fluids in both the ReO2–H2O and ReO2–SiO2–H2O systems. Rhenium is dissolved in aqueous fluid as ReO4-complexes with Re in fourfold coordination with oxygen. Some, or all, of the oxygen in these complexes is replaced by OH-groups depending on whether Na2O also is present. It is proposed that during dehydration of hydrated subduction zone mineral assemblages in the upper mantle, the alkali/alkaline earth ratio of the source of the released aqueous fluid affects the extent to which Re (and other HFSE) can be transported into an overlying peridotite mantle wedge. The infiltration of such fluids will, in turn, affect the Re content (and Re/Os ratio) of magma formed by partial melting of this peridotite wedge.

Funder

Carnegie Institution of Washington

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3