Experimental simulations of shock textures in BCC iron: implications for iron meteorites

Author:

Ohtani EijiORCID,Sakurabayashi Toru,Kurosawa Kosuke

Abstract

AbstractNeumann band in iron meteorites, which is deformation twins in kamacite (Fe–Ni alloy), has been known to be a characteristic texture indicating ancient collisions on parent bodies of meteorites. We conducted a series of shock recovery experiments on bcc iron with the projectile velocity at 1.5 km/s at various initial temperatures, room temperature, 670 K, and 1100 K, and conducted an annealing experiment on the shocked iron. We also conducted numerical simulations with the iSALE-2D code to investigate peak pressure and temperature distributions in the nontransparent targets. The effects of pressure and temperature on the formation and disappearance of the twins (Neumann band) were explored based on laboratory and numerical experiments. The twin was formed in the run products of the experiments conducted at room temperature and 670 K, whereas it was not observed in the run product formed by the impact at 1100 K. The present experiments combined with the numerical simulations revealed that the twin was formed by impacts with various shock pressures from 1.5–2 GPa to around 13 GPa. The twin in iron almost disappeared by annealing at 1070 K. The iron meteorites with Neumann bands were shocked at this pressure range and temperatures at least up to 670 K, and were not heated to the temperatures above 1070 K after the Neumann band formation.

Funder

japan society for the promotion of science

Japan Society for the Promotion of Science

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

Reference41 articles.

1. Ahrens TJ (1987) Shock-wave techniques for geophysics and planetary physics. In: Sammis CG, Henyey TL (eds) Methods of experimental physics. Academic Press, New York, pp 185–235

2. Amsden A, Ruppel H, Hirt C(1980) Sale: a simplified ale computer program for fluid flows at all speeds. Technical report LA-8095 Report, Los Alamos National Laboratories

3. Bischoff A, Stöffler D (1992) Shock metamorphism as a fundamental process in the evolution of planetary bodies: information from meteorites. Eur J Mineral 4:707–755

4. Buchwald VF (1975) Secondary structure of iron meteorite, Chapter 11, 125–136, in Handbook of iron meteorites, vol. 1, University of Hawaii

5. Calister WD, Rethwisch DG (2000) Materials science and engineering: an introduction, 8th edn. Wiley, Hoboken

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3