The dynamic evolution of compaction bands in highly porous carbonates: the role of local heterogeneity for nucleation and propagation

Author:

Chen Xiao,Roshan Hamid,Lv Adelina,Hu Manman,Regenauer-Lieb KlausORCID

Abstract

AbstractThe formation of compaction bands in porous brittle rocks such as sandstones and carbonates has a significant impact on the localization mechanisms preceding earth and planetary surface instabilities such as earthquakes, landslides, and plate boundary faults. The micromechanics underpinning the dynamics of the formation of compaction bands and its effect on alteration of pore fluid pathways are not yet fully understood. The current study seeks to understand the mechanical properties of compaction in highly porous carbonate at micro- and macro-scale using time-lapse triaxial experiments in an X-ray transparent flow and deformation cell. Images were obtained with increasing axial strain levels using X-ray computed tomography allowing mapping of the evolution of internal structures. In addition to the X-ray analysis, digital image correlation (DIC) was used to quantify the evolution of strain and precisely identify the nucleation mechanism of compaction bands and its dynamics. The effect of friction on the boundary platens was shown to be minimal as evidenced by shear strain obtained from DIC analysis. This comprehensive analysis allowed assessment of the role of heterogeneity for the initiation of compaction bands. Local regions with high porosity provide the initial seeds for discrete compaction followed by the nucleation of traveling waves that lead to diffuse growth of the compaction zone. This interesting phenomenon is expected to be a fundamental mode of compressional deformation in porous brittle media where discrete, often periodic, deformation bands are observed on compaction.

Funder

Australian Research Council

Publisher

Springer Science and Business Media LLC

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3