Enhanced content-based fashion recommendation system through deep ensemble classifier with transfer learning

Author:

Suvarna Buradagunta,Balakrishna Sivadi

Abstract

AbstractWith the rise of online shopping due to the COVID-19 pandemic, Recommender Systems have become increasingly important in providing personalized product recommendations. Recommender Systems face the challenge of efficiently extracting relevant items from vast data. Numerous methods using deep learning approaches have been developed to classify fashion images. However, those models are based on a single model that may or may not be reliable. We proposed a deep ensemble classifier that takes the probabilities obtained from five pre-trained models such as MobileNet, DenseNet, Xception, and the two varieties of VGG. The probabilities obtained from the five pre-trained models are then passed as inputs to a deep ensemble classifier for the prediction of the given item. Several similarity measures have been studied in this work and the cosine similarity metric is used to recommend the products for a classified product given by a deep ensemble classifier. The proposed method is trained and validated using benchmark datasets such as Fashion product images dataset and Shoe dataset, demonstrating superior accuracy compared to existing models. The results highlight the potential of leveraging transfer learning and deep ensemble techniques to enhance fashion recommendation systems. The proposed model achieves 96% accuracy compared to the existing models.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3