Physiological and psychological neck load imposed by ballistic helmets during simulated military activities
-
Published:2020-08-15
Issue:1
Volume:7
Page:
-
ISSN:2198-0802
-
Container-title:Fashion and Textiles
-
language:en
-
Short-container-title:Fash Text
Author:
Kim Siyeon, Jeong WonyoungORCID
Abstract
AbstractThe wearing of ballistic helmets commonly coordinated with a night vision device (NVD) often imposes a load to the neck of a soldier. A lighter ballistic helmet promises comfort and enhanced combat performance, but technological developments have not provided a complete solution satisfying all the requirements, including cost. Moreover, the change in munition has led to increasing demand for the attachment of more accessories to the helmet, providing advanced functions but additional weight. Therefore, the current study quantified the neck muscle strain caused by the varying weight of a ballistic helmet, particularly during simulated infantry activities with moderate neck flexion and neck extension against a head-weight in the prone position. Eight healthy males participated on four separate days. On each day, different loads were placed on the head: 0 kg (no helmet, NH) to 2.07 kg (1.5 kg helmet with a 0.5 kg night vision device, HH&NVD). The results showed that prone shooting imposed substantial muscular strain on the splenius capitis (neck extensor), resulting in a 7–9% maximal voluntary contraction depending on the overall helmet loads. In addition, a gradual increase in the subjective neck load and pain in proportion to the overall weight of the helmet assembly was noted, and the heaviest loads caused severe complaints for muscular discomfort. This paper recommends strategies for designing and developing ballistic helmets as well as further methodological issues on evaluating neck muscle strain caused by the helmet weight.
Funder
Ministry of National Defense Korea Institute of Industrial Technology Gyeonggi-Do
Publisher
Springer Science and Business Media LLC
Subject
Marketing,Strategy and Management,Materials Science (miscellaneous),Cultural Studies,Social Psychology
Reference15 articles.
1. Alricsson M, Harms-Ringdahl K, Larsson B, Linder J, Werner S (2004) Neck muscle strength and endurance in fighter pilots: Effects of a supervised training program. Aviat Space Environ Med 75:23–28. 2. Äng, B., & Harms-Ringhahl, K. (2006). Neck pain and related disability in helicopter pilots: a survey of prevalence and risk-factors. Aviation, Space, and Environmental Medicine,77(7), 713–719. 3. Cheng, C.-H., Chien, A., Hsu, W.-L., Chen, C. P.-C., & Cheng, H.-Y. K. (2016). Investigation of the differential contributions of superficial and deep muscles on cervical spinal loads with changing head postures. PLoS Ones. https://doi.org/10.1371/journal.pone.0150608. 4. Garcia, A. L., Wagner, K., Hothorn, T., Koebnick, C., Zunft, H.-J. F., & Trippo, U. (2005). Improved prediction of body fat by measuring skinfold thickness, circumferences, and bone breadths. Obesity Research,13(3), 626–634. 5. Harrison, M. F., Coffey, B., Albert, W. J., & Fisher, S. L. (2015). Night vision goggle-induced neck pain in military helicopter aircrew: A literature review. Aerospace Medicine and Human Performance,86(1), 46–55.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|