Methodological considerations on segmenting rhabdomyosarcoma with diffusion-weighted imaging—What can we do better?

Author:

Chatziantoniou CyranoORCID,Schoot Reineke A.,van Ewijk Roelof,van Rijn Rick R.,ter Horst Simone A. J.,Merks Johannes H. M.,Leemans Alexander,De Luca Alberto

Abstract

Abstract Purpose Diffusion-weighted MRI is a promising technique to monitor response to treatment in pediatric rhabdomyosarcoma. However, its validation in clinical practice remains challenging. This study aims to investigate how the tumor segmentation strategy can affect the apparent diffusion coefficient (ADC) measured in pediatric rhabdomyosarcoma. Materials and methods A literature review was performed in PubMed using search terms relating to MRI and sarcomas to identify commonly applied segmentation strategies. Seventy-six articles were included, and their presented segmentation methods were evaluated. Commonly reported segmentation strategies were then evaluated on diffusion-weighted imaging of five pediatric rhabdomyosarcoma patients to assess their impact on ADC. Results We found that studies applied different segmentation strategies to define the shape of the region of interest (ROI)(outline 60%, circular ROI 27%), to define the segmentation volume (2D 44%, multislice 9%, 3D 21%), and to define the segmentation area (excludes edge 7%, excludes other region 19%, specific area 27%, whole tumor 48%). In addition, details of the segmentation strategy are often unreported. When implementing and comparing these strategies on in-house data, we found that excluding necrotic, cystic, and hemorrhagic areas from segmentations resulted in on average 5.6% lower mean ADC. Additionally, the slice location used in 2D segmentation methods could affect ADC by as much as 66%. Conclusion Diffusion-weighted MRI studies in pediatric sarcoma currently employ a variety of segmentation methods. Our study shows that different segmentation strategies can result in vastly different ADC measurements, highlighting the importance to further investigate and standardize segmentation.

Funder

Stichting Kinderen Kankervrij

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3