Coronary CTA-based radiomic signature of pericoronary adipose tissue predict rapid plaque progression

Author:

Li Yue,Huo Huaibi,Liu Hui,Zheng Yue,Tian Zhaoxin,Jiang Xue,Jin Shiqi,Hou Yang,Yang Qi,Teng Fei,Liu TingORCID

Abstract

Abstract Objectives To explore the value of radiomic features derived from pericoronary adipose tissue (PCAT) obtained by coronary computed tomography angiography for prediction of coronary rapid plaque progression (RPP). Methods A total of 1233 patients from two centers were included in this multicenter retrospective study. The participants were divided into training, internal validation, and external validation cohorts. Conventional plaque characteristics and radiomic features of PCAT were extracted and analyzed. Random Forest was used to construct five models. Model 1: clinical model. Model 2: plaque characteristics model. Model 3: PCAT radiomics model. Model 4: clinical + radiomics model. Model 5: plaque characteristics + radiomics model. The evaluation of the models encompassed identification accuracy, calibration precision, and clinical applicability. Delong’ test was employed to compare the area under the curve (AUC) of different models. Results Seven radiomic features, including two shape features, three first-order features, and two textural features, were selected to build the PCAT radiomics model. In contrast to the clinical model and plaque characteristics model, the PCAT radiomics model (AUC 0.85 for training, 0.84 for internal validation, and 0.81 for external validation; p < 0.05) achieved significantly higher diagnostic performance in predicting RPP. The separate combination of radiomics with clinical and plaque characteristics model did not further improve diagnostic efficacy statistically (p > 0.05). Conclusion Radiomic feature analysis derived from PCAT significantly improves the prediction of RPP as compared to clinical and plaque characteristics. Radiomic analysis of PCAT may improve monitoring RPP over time. Critical relevance statement Our findings demonstrate PCAT radiomics model exhibited good performance in the prediction of RPP, with potential clinical value. Key Points Rapid plaque progression may be predictable with radiomics from pericoronary adipose tissue. Fibrous plaque volume, diameter stenosis, and fat attenuation index were identified as risk factors for predicting rapid plaque progression. Radiomics features of pericoronary adipose tissue can improve the predictive ability of rapid plaque progression. Graphical Abstract

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3