Abstract
Abstract
Objective
We assessed the predictive capacity of computed tomography (CT)-enhanced radiomics models in determining microvascular invasion (MVI) for isolated hepatocellular carcinoma (HCC) ≤ 5 cm within peritumoral margins of 5 and 10 mm.
Methods
Radiomics software was used for feature extraction. We used the least absolute shrinkage and selection operator (LASSO) algorithm to establish an effective model to predict patients’ preoperative MVI status.
Results
The area under the curve (AUC) values in the validation sets for the 5- and 10-mm radiomics models concerning arterial tumors were 0.759 and 0.637, respectively. In the portal vein phase, they were 0.626 and 0.693, respectively. Additionally, the combined radiomics model for arterial tumors and the peritumoral 5-mm margin had an AUC value of 0.820. The decision curve showed that the combined tumor and peritumoral radiomics model exhibited a somewhat superior benefit compared to the traditional model, while the fusion model demonstrated an even greater advantage, indicating its significant potential in clinical application.
Conclusion
The 5-mm peritumoral arterial model had superior accuracy and sensitivity in predicting MVI. Moreover, the combined tumor and peritumoral radiomics model outperformed both the individual tumor and peritumoral radiomics models. The most effective combination was the arterial phase tumor and peritumor 5-mm margin combination. Using a fusion model that integrates tumor and peritumoral radiomics and clinical data can aid in the preoperative diagnosis of the MVI of isolated HCC ≤ 5 cm, indicating considerable practical value.
Critical relevance statement
The radiomics model including a 5-mm peritumoral expansion is a promising noninvasive biomarker for preoperatively predicting microvascular invasion in patients diagnosed with a solitary HCC ≤ 5 cm.
Key points
• Radiomics features extracted at a 5-mm distance from the tumor could better predict hepatocellular carcinoma microvascular invasion.
• Peritumoral radiomics can be used to capture tumor heterogeneity and predict microvascular invasion.
• This radiomics model stands as a promising noninvasive biomarker for preoperatively predicting MVI in individuals.
Graphical Abstract
Funder
Henan Provincial Science and Technology Research Project
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献