PET/CT deep learning prognosis for treatment decision support in esophageal squamous cell carcinoma

Author:

Song JiangdianORCID,Zhang Jie,Liu Guichao,Guo Zhexu,Liao Hongxian,Feng Wenhui,Lin Wenxiang,Li Lei,Zhang Yi,Yang Yuxiang,Liu Bin,Luo Ruibang,Chen Hao,Wang Siyun,Liu Jian-Hua

Abstract

Abstract Objectives The clinical decision-making regarding choosing surgery alone (SA) or surgery followed by postoperative adjuvant chemotherapy (SPOCT) in esophageal squamous cell carcinoma (ESCC) remains controversial. We aim to propose a pre-therapy PET/CT image-based deep learning approach to improve the survival benefit and clinical management of ESCC patients. Methods This retrospective multicenter study included 837 ESCC patients from three institutions. Prognostic biomarkers integrating six networks were developed to build an ESCC prognosis (ESCCPro) model and predict the survival probability of ESCC patients treated with SA and SPOCT. Patients who did not undergo surgical resection were in a control group. Overall survival (OS) was the primary end-point event. The expected improvement in survival prognosis with the application of ESCCPro to assign treatment protocols was estimated by comparing the survival of patients in each subgroup. Seven clinicians with varying experience evaluated how ESCCPro performed in assisting clinical decision-making. Results In this retrospective multicenter study, patients receiving SA had a median OS 9.2 months longer than controls. No significant differences in survival were found between SA patients with predicted poor outcomes and the controls (p > 0.05). It was estimated that if ESCCPro was used to determine SA and SPOCT eligibility, the median OS in the ESCCPro-recommended SA group and SPOCT group would have been 15.3 months and 24.9 months longer, respectively. In addition, ESCCPro also significantly improved prognosis accuracy, certainty, and the efficiency of clinical experts. Conclusion ESCCPro assistance improved the survival benefit of ESCC patients and the clinical decision-making among the two treatment approaches. Critical relevance statement The ESCCPro model for treatment decision-making is promising to improve overall survival in ESCC patients undergoing surgical resection and patients undergoing surgery followed by postoperative adjuvant chemotherapy. Key Points ESCC is associated with a poor prognosis and unclear ideal treatments. ESCCPro predicts the survival of patients with ESCC and the expected benefit from SA. ESCCPro improves clinicians’ stratification of patients’ prognoses. Graphical Abstract

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3