Abstract
Abstract
Purpose
To investigate the reproducibility of radiomics features extracted from two-dimensional regions of interest (2D ROIs) versus whole lung (3D) ROIs in repeated in-vivo fetal magnetic resonance imaging (MRI) acquisitions.
Methods
Thirty fetal MRI scans including two axial T2-weighted acquisitions of the lungs were analysed. 2D (lung at the level of the carina) and 3D (whole lung) ROIs were manually segmented using ITK-Snap. Ninety-five radiomics features were extracted from 2 and 3D ROIs in initial and repeat acquisitions using Pyradiomics. Radiomics feature intra-class correlation coefficients (ICC) were calculated between 2 and 3D ROIs in the initial acquisition, and between 2 and 3D ROIs in repeated acquisitions, respectively.
Results
MRI data of 11 (36.7%) female and 19 (63.3%) male fetuses acquired at a median 25 + 0 gestational weeks plus days (GW) (interquartile range [IQR] 23 + 4 − 27 + 0 GW) were assessed. Median radiomics feature ICC between 2 and 3D ROIs in the initial MRI acquisition was 0.733 (IQR 0.313–0.814, range 0.018–0.970). ICCs between radiomics features extracted using 3D ROIs in initial and repeat acquisitions (median 0.908 [IQR 0.824–0.929, range 0.335–0.996]) were significantly higher compared to 2D ROIs (0.771 [0.699–0.835, 0.048–0.965]) (p < 0.001).
Conclusion
Fetal MRI radiomics features extracted from 3D whole lung segmentation masks showed significantly higher reproducibility across repeat acquisitions compared to 2D ROIs. Therefore, fetal MRI whole lung radiomics features are robust diagnostic and potentially prognostic tools in the image-based in-vivo quantitative assessment of lung development.
Publisher
Springer Science and Business Media LLC
Subject
Radiology, Nuclear Medicine and imaging