Reproducibility of 2D versus 3D radiomics for quantitative assessment of fetal lung development: a retrospective fetal MRI study

Author:

Watzenboeck Martin L.,Heidinger Benedikt H.,Rainer Julian,Schmidbauer Victor,Ulm Barbara,Rubesova Erika,Prayer Daniela,Kasprian Gregor,Prayer FlorianORCID

Abstract

Abstract Purpose To investigate the reproducibility of radiomics features extracted from two-dimensional regions of interest (2D ROIs) versus whole lung (3D) ROIs in repeated in-vivo fetal magnetic resonance imaging (MRI) acquisitions. Methods Thirty fetal MRI scans including two axial T2-weighted acquisitions of the lungs were analysed. 2D (lung at the level of the carina) and 3D (whole lung) ROIs were manually segmented using ITK-Snap. Ninety-five radiomics features were extracted from 2 and 3D ROIs in initial and repeat acquisitions using Pyradiomics. Radiomics feature intra-class correlation coefficients (ICC) were calculated between 2 and 3D ROIs in the initial acquisition, and between 2 and 3D ROIs in repeated acquisitions, respectively. Results MRI data of 11 (36.7%) female and 19 (63.3%) male fetuses acquired at a median 25 + 0 gestational weeks plus days (GW) (interquartile range [IQR] 23 + 4 − 27 + 0 GW) were assessed. Median radiomics feature ICC between 2 and 3D ROIs in the initial MRI acquisition was 0.733 (IQR 0.313–0.814, range 0.018–0.970). ICCs between radiomics features extracted using 3D ROIs in initial and repeat acquisitions (median 0.908 [IQR 0.824–0.929, range 0.335–0.996]) were significantly higher compared to 2D ROIs (0.771 [0.699–0.835, 0.048–0.965]) (p < 0.001). Conclusion Fetal MRI radiomics features extracted from 3D whole lung segmentation masks showed significantly higher reproducibility across repeat acquisitions compared to 2D ROIs. Therefore, fetal MRI whole lung radiomics features are robust diagnostic and potentially prognostic tools in the image-based in-vivo quantitative assessment of lung development.

Publisher

Springer Science and Business Media LLC

Subject

Radiology, Nuclear Medicine and imaging

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3