Secondary structure of protamine in sperm nuclei: an infrared spectroscopy study

Author:

Roque Alicia,Ponte Inma,Suau Pedro

Abstract

Abstract Background Protamines are small basic proteins that condense the DNA in mature spermatozoa. Typical protamines are of simple composition and very arginine-rich, usually in the range of 60-80%. Arginine residues are distributed in a number of stretches separated by neutral amino acids. We have used Fourier transform infrared spectroscopy (FTIR) to gain access for the first time to the secondary structure of protamines in sperm nuclei. This technique is particularly well suited to the study of DNA-bound protamine in whole nuclei since it is not affected by turbidity. Results We show that DNA -bound salmon (salmine) and squid protamines contain α-helix, β-turns and a proportion of other structures not stabilized by intramolecular hydrogen bonding. No β-sheet was observed. In salmine, the α-helix amounted to ~20%, while in squid protamine it reached ~40%. In contrast, the structure not stabilized by intermolecular hydrogen bonding was more abundant in salmine (~40%) than in squid protamine (~20%). Both protamines contained ~40% β-turns. The different helical potential of salmine and squid protamine was confirmed by structure predictions and CD in the presence of trifluoroethanol. Conclusion DNA-bound protamine in sperm nuclei contains large amounts of defined secondary structure stabilized by intramolecular hydrogen bonding. Both salmine and squid protamine contain similar amounts of β-turns, but differ in the proportions of α-helix and non-hydrogen bonded conformations. In spite of the large differences in the proportions of secondary structure motifs between salmon and squid protamines, they appear to be equally efficient in promoting tight hexagonal packing of the DNA molecules in sperm nuclei.

Publisher

Springer Science and Business Media LLC

Subject

Structural Biology

Reference35 articles.

1. Bloch DP: A catalog of sperm histones. Genetics Suppl 1969, 61: 93–111.

2. Feughelman M, Langridge R, Seed WE, Stokes AR, Wilson HR, Hooper CW, Wilkins MHF, Barcley RK, Hamilton LD: Molecular structure of deoxyribose nucleic acid and nucleoprotein. Nature 1955, 175: 834–838. 10.1038/175834a0

3. Subirana JA, Puigjaner L: X-ray diffraction studies of nucleoprotamines from mollusks. In conformation of biological molecules and polymers. Edited by: Bergman ED, Pullman B. Jerusalem: The Israel Academy of Sciences and Humanities; 1973:645–653.

4. Herskovits TT, Brahms J: Structural investigations on DNA·Protamine complexes. Biopolymers 1976, 15: 687–706. 10.1002/bip.1976.360150408

5. Suau P, Subirana JA: X-ray diffraction studies of nucleoprotamine structure. J Mol Biol 1977, 117: 909–926. 10.1016/S0022-2836(77)80005-3

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3