Author:
Genet Matthew D,Cartwright Ian M,Kato Takamitsu A
Abstract
Abstract
Background
Fluorescence in situ Hybridization (FISH) utilizes peptide nucleic acid (PNA) probes to identify specific DNA sequences. Traditional techniques have required the heat denaturing of the DNA in formamide followed by multiple hours at moderated temperatures to allow the probe to hybridize to its specific target. Over the past 30 years, advancements in both protocols and probes have made FISH a more reliable technique for both biological research and medical diagnostics, additionally the protocol has been shortened to several minutes. These PNA probes were designed to target and hybridize to both DNA and RNA, and PNA-protein interactions still remain unclear.
Results
In this study we have shown that a telomeric single stranded specific PNA probe is able to bind to its target without heat denaturing of the DNA and without formamide. We have also identified a centromere specific probe, which was found to bind its target with only incubation with formamide.
Conclusions
Certain PNA probes are able to hybridize with their targets with minimal to no denaturing of the DNA itself. This limited denaturing preserves the chromosome structure and may lead to more effective and specific staining.
Publisher
Springer Science and Business Media LLC
Subject
Biochemistry (medical),Genetics (clinical),Genetics,Molecular Biology,Molecular Medicine,Biochemistry
Reference17 articles.
1. Paulasova P, Pellestor F: The peptide nucleic acids (PNAs): a new generation of probes for genetic and cytogenetic analyses. Ann Genet 2004, 47: 349–358. 10.1016/j.anngen.2004.07.001
2. Garcia-Sagredo JM: Fifty years of cytogenetics: a parallel view of the evolution of cytogenetics and genotoxicology. Biochim Biophys Acta 2008, 1779: 363–375. 10.1016/j.bbagrm.2008.05.003
3. Durm M, Haar FM, Hausmann M, Ludwig H, Cremer C: Optimization of fast-fluorescence in situ hybridization with repetitive alpha-satellite probes. Z Naturforsch C 1996, 51: 253–261.
4. Ijichi K, Fujiwara M, Hanasaki Y, Katsuura K, Shigeta S, Konno K, Yokota T, Baba M: Inhibitory effect of 4-(2, 6-dichlorophenyl)-1, 2, 5-thiadiazol-3-yl-N-methyl, N-ethylcarbamate on replication of human immunodeficiency virus type 1 and the mechanism of action. Biochem Mol Biol Int 1996, 39: 41–52.
5. Cartwright IM, Genet MD, Kato TA: A simple and rapid fluorescence in situ hybridization microwave protocol for reliable dicentric chromosome analysis. J Radiat Res 2013, 54: 344–348. 10.1093/jrr/rrs090
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献