A case report of brainstem hemorrhage due to Rhizopus delemar-induced encephalitis diagnosed by metagenomic next-generation sequencing (mNGS)

Author:

Xie Shuhua,Lai Zhaohui,Xia Han,Tang Mingze,Lai Jinxing,Liu Qing,Lu Zhijuan,He Dehai,Qi Jiangli,Liu Xianghong

Abstract

Abstract Background Rhizopus delemar is an invasive fungal pathogen that can cause fatal mucormycosis in immunodeficient individuals. Encephalitis caused by R. delemar is rare and difficult to diagnose early. Clinical detection methods for R. delemar include blood fungal culture, direct microscopic examination, and histopathological examination, but the detection is often inadequate for clinical diagnosis and can easily lead to missed diagnosis with delayed treatment. Case presentation We report a case of a 47-year-old male with brainstem hemorrhage caused by encephalitis due to R. delemar. The patient had a history of hypertension, type 2 diabetes, and irregular medication. No pathogens were detected in cerebrospinal fluid (CSF) and nasopharyngeal secretion cultures. R. delemar was identified by metagenomic next-generation sequencing (mNGS) in CSF, and in combination with the patient’s clinical characteristics, encephalitis caused by R. delemar was diagnosed. Antibiotic treatment using amphotericin B liposome in combination with posaconazole was given immediately. However, due to progressive aggravation of the patient’s symptoms, he later died due to brainstem hemorrhage after giving up treatment. Conclusions mNGS technique is a potential approach for the early diagnosis of infections, which can help clinicians provide appropriate antibiotic treatments, thus reducing the mortality and disability rate of patients.

Funder

Science and Technology Project of Xi’an

Central Government Funds of Beijing Municipal Science & Technology Commission

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Amphotericin-B-liposomal/posaconazole;Reactions Weekly;2023-06-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3