Author:
Agbo Martina C.,Ezeonu Ifeoma M.,Onodagu Beatrice O.,Ezeh Chukwuemeka C.,Ozioko Chizoba A.,Emencheta Stephen C.
Abstract
Abstract
Background
Multidrug resistance in Staphylococcus aureus continues to influence treatment complications in clinical settings globally. Multidrug-resistant-S. aureus (MDR-SA) is often genetically driven by resistance markers transferable in pathogenic strains. This study aimed to determine the distribution of resistance markers in clinical isolates of S. aureus in Nsukka, Nigeria.
Methods
A total of 154 clinical samples were cultured on mannitol salt agar. Isolates were characterized using conventional cultural techniques and confirmed by PCR detection of S. aureus-specific nuc gene. Antibiotic resistance profiles of the isolates were determined against selected antibiotics using the disk-diffusion method, while screening for antibiotic resistance genes (Mec A, Erm A, Erm B, Erm C, Van A, and Van B) was by PCR.
Results
A total of 98 isolates were identified as S. aureus by conventional methods. Of these, 70 (71.43%) were confirmed by PCR. Phenotypically, the isolates exhibited high degrees of resistance to oxacillin (95.72%), erythromycin (81.63%), and ertapenem (78.57%) and 75.51% and 47.30% against methicillin and vancomycin, respectively. Multiple antibiotic resistance indexes of the isolates ranged from 0.3 to 1, and the most prevalent pattern of resistance was oxacillin-ertapenem-vancomycin-erythromycin-azithromycin-clarithromycin-ciprofloxacin- cefoxitin-amoxicillin-clavulanic acid. PCR screening confirmed the existence of various antibiotic resistance makers among the strains, with the most common resistance genes found in the isolates being Mec A (32.14%), Van A (21.43%), Van B (10.71%), Erm B (10.71%), and Erm C (17.86%). None possessed the Erm A gene.
Conclusion
The study supports the need for necessary action, including rational drug use, continuous surveillance, and deployment of adequate preventive and curative policies and actions.
Publisher
Springer Science and Business Media LLC
Reference43 articles.
1. World Health Organization. Antimicrobial Resistance. 2021. https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance. Accessed 27 June 2022.
2. Financial Times Limited. Antibiotic resistance in Africa: ‘a pandemic that is already here’. Available from: https://www.ft.com/content/95f150df-5ce6-43cf-aa8d-01ac3bdcf0ef; Accessed 26: 2022.
3. Ndihokubwayo JB, Yahaya AH, Desta AT, Ki-Zerbo G, Odei EA, Keita B, et al. Antimicrobial resistance in the African Region: issues, challenges and actions proposed. Volume 16. WHO Regional Office for Africa; 2013. pp. 27–30.
4. Tadesse BT, Ashley EA, Ongarello S, Havumaki J, Wijegoonewardena M, González IJ, et al. Antimicrob Resist Africa: Syst Rev BMC Infect Dis. 2017;17:616.
5. Saleem N, Nawaz M, Ghafoor A, Javeed A, Mustafa A, Yousuf MR, et al. Phenotypic and Molecular Analysis of Antibiotic Resistance in Lactobacilli of Poultry origin from Lahore, Pakistan. Pak Vet J. 2018;38(4):409–13.