DNA-PKcs plays a dominant role in the regulation of H2AX phosphorylation in response to DNA damage and cell cycle progression

Author:

An Jing,Huang Yue-Cheng,Xu Qing-Zhi,Zhou Li-Jun,Shang Zeng-Fu,Huang Bo,Wang Yu,Liu Xiao-Dan,Wu De-Chang,Zhou Ping-Kun

Abstract

Abstract Background When DNA double-strand breaks (DSB) are induced by ionizing radiation (IR) in cells, histone H2AX is quickly phosphorylated into γ-H2AX (p-S139) around the DSB site. The necessity of DNA-PKcs in regulating the phosphorylation of H2AX in response to DNA damage and cell cycle progression was investigated. Results The level of γH2AX in HeLa cells increased rapidly with a peak level at 0.25 - 1.0 h after 4 Gy γ irradiation. SiRNA-mediated depression of DNA-PKcs resulted in a strikingly decreased level of γH2AX. An increased γH2AX was also induced in the ATM deficient cell line AT5BIVA at 0.5 - 1.0 h after 4 Gy γ rays, and this IR-increased γH2AX in ATM deficient cells was dramatically abolished by the PIKK inhibitor wortmannin and the DNA-PKcs specific inhibitor NU7026. A high level of constitutive expression of γH2AX was observed in another ATM deficient cell line ATS4. The alteration of γH2AX level associated with cell cycle progression was also observed. HeLa cells with siRNA-depressed DNA-PKcs (HeLa-H1) or normal level DNA-PKcs (HeLa-NC) were synchronized at the G1 phase with the thymidine double-blocking method. At ~5 h after the synchronized cells were released from the G1 block, the S phase cells were dominant (80%) for both HeLa-H1 and HeLa-NC cells. At 8 - 9 h after the synchronized cells released from the G1 block, the proportion of G2/M population reached 56 - 60% for HeLa-NC cells, which was higher than that for HeLa H1 cells (33 - 40%). Consistently, the proportion of S phase for HeLa-NC cells decreased to ~15%; while a higher level (26 - 33%) was still maintained for the DNA-PKcs depleted HeLa-H1 cells during this period. In HeLa-NC cells, the γH2AX level increased gradually as the cells were released from the G1 block and entered the G2/M phase. However, this γH2AX alteration associated with cell cycle progressing was remarkably suppressed in the DNA-PKcs depleted HeLa-H1 cells, while wortmannin and NU7026 could also suppress this cell cycle related phosphorylation of H2AX. Furthermore, inhibition of GSK3β activity with LiCl or specific siRNA could up-regulate the γH2AX level and prolong the time of increased γH2AX to 10 h or more after 4 Gy. GSK3β is a negative regulation target of DNA-PKcs/Akt signaling via phosphorylation on Ser9, which leads to its inactivation. Depression of DNA-PKcs in HeLa cells leads to a decreased phosphorylation of Akt on Ser473 and its target GSK3β on Ser9, which, in other words, results in an increased activation of GSK3β. In addition, inhibition of PDK (another up-stream regulator of Akt/GSK3β) by siRNA can also decrease the induction of γH2AX in response to both DNA damage and cell cycle progression. Conclusion DNA-PKcs plays a dominant role in regulating the phosphorylation of H2AX in response to both DNA damage and cell cycle progression. It can directly phosphorylate H2AX independent of ATM and indirectly modulate the phosphorylation level of γH2AX via the Akt/GSK3 β signal pathway.

Publisher

Springer Science and Business Media LLC

Subject

Molecular Biology

Cited by 143 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3