Identification of DNA variation in callus derived from Zingiber officinale and anticoagulation activities of ginger rhizome and callus

Author:

Abd El-Hameid Asmaa R.,Abo El-kheir Zakia A.,Abdel-Hady M. S.,Helmy Wafaa A.

Abstract

Abstract Background The medicinal plants have been used as alternative treatments for many diseases in many countries. Thus, the possibility of the alteration of some naturally relatively cheap sources into highly valuable products for pharmaceutical and biological importance via tissue culture is investigated in this study. Special attention is needed to estimate the molecular genetic variation between the studied plant and the callus. Results Ginger (Zingiber officinale Roscoe) rhizome was affected by various concentrations of cytokinin and auxin for the induction of callus. The highest percentage of callus induction and maximal callus fresh weight was achieved when Murashige and Skoog (MS) medium was supplemented with 2 mg/l 2, 4-D + 1mg/l BA. The genetic variations accompanied with in vitro conditions of callus induction was evaluated by four primers of inter-simple sequence repeat (ISSR) that amplified 36 bands. The highest readings for clotting times were found by using the sulfated neutral extract of ginger rhizome at a concentration of 400 μg/ml, and the extract of sulfated alkaline plant callus had an anticoagulation activity at (200 μg/ml) comparable to that of a standard preparation of heparin sodium. Conclusion These results showed that ginger (Zingiber officinale Roscoe) rhizome was affected by various concentrations of cytokinin and auxin for induction of callus especially when MS was supplemented with 2 mg/l 2, 4-D + 1 mg/l BA. Also, the results of ISSR markers confirmed the occurrence of genetic variations during callus induction process. The results indicated that the sulfated alkaline of ginger rhizome and sulfated aqueous extracts of ginger rhizome and callus exhibited anticoagulant activity. So, it was clear that the addition of sulfate group into the investigated extracts enhances the anticoagulation activities.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference47 articles.

1. Abirami H, Kumar PS (2013) In vitro regeneration and extraction of secondary metabolites in Aegle marmelos (L.) Correa. Asian J Plant Sci Res 3(2):99–106

2. Baskaran P, Rajeswari BR, Jayabalan N (2006) Development of an in vitro regeneration system in sorghum [Sorghum bicolor (L). Moench] using root transverse thin cell layers (tTCLs). Turk J Bot 30:1–9

3. Bordallo PN, Silva DH, Maria J, Cruz CD, Elizabeth P, Fontes EP (2004) Somaclonal variation on in vitro callus culture potato cultivars. Hort Bras Bras 22(2):300–304

4. Colman RW, Hirsh J, Marder VJ (1994) Haemostasis and thrombosis: basic principles and practice, Lippincott Company JB, pp 759–762

5. Costa F, Zaffari GT (2005) Micropropagação de Ananas bracteatus (Shultz) cv. striatus. Hort Rev Bras HortOrnamenta 11:109–113

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3