Correlation between operating parameters and removal efficiency for chemically enhanced primary treatment system of wastewater

Author:

Al Bazedi Ghada A.ORCID,Abdel-Fatah Mona A.

Abstract

Abstract Background “Chemically enhanced primary treatment” (CEPT) is an approach to wastewater treatment. It can be utilized as a specially designed step in “biological” secondary treatment processes. The aim of this study is to create an empirical model of separation efficiency for wastewater chemically enhanced primary treatment. Methods The empirical model is undertaken using the simulation of the data obtained from pilot plant experimental studies using different types of coagulant (FeCl3, alum, lime, and Magna-floc155). The empirical modeling techniques used multivariate regression model. Different values of BOD5, COD, TSS, as well as separation efficiencies for COD and TSS were investigated in accordance to achieve final effluent results that would meet the Egyptian standards limit. Results Multiple regression analysis showed that removal efficiencies of COD and TSS can be predicted to be (R2 = 0.973 and 0.978, respectively). Conclusion The present work provides an approach for using chemically enhanced primary treatment of wastewater. The obtained results showed that the empirical model can predict removal efficiencies with R2 = 0.973, and 0.978 for COD and TSS. The advantage of this model is that it would allow better process control and treatment efficiency. The results show that chemically enhanced primary treatment method can be used as an efficient method in conventional municipal wastewater treatment plants to reduce the organic load of biological treatment and enhance nutrients removal.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3