Mitigation of adverse effects of salinity stress on sunflower plant (Helianthus annuus L.) by exogenous application of chitosan

Author:

Bakhoum Gehan ShakerORCID,Sadak Mervat Shamoon,Badr Elham Abd El Moneim

Abstract

Abstract Background Most developing countries are suffering from a decline in agricultural area and fresh water supply due to the adverse effects of climate change. Sunflower has been considered as having the ability to grow under various environmental conditions, tolerating levels considered stresses to other plants. Materials and Methods Thus, two field experiments were conducted in the screen of National Research Centre during two successive summer seasons 2018 and 2019, respectively to investigate the effect of soaking seeds of sunflower plant in different concentrations of chitosan (control, 25, 50 and 75 mg/L) on growth, some physiological parameters, yield and its components and some chemical composition of the yielded seeds of sunflower under different salinity levels (control, 4000 and 8000 mg/l). Results The obtained results showed that salt stress with 4000 mg/L recorded the highest values of all the studied growth characters, photosynthetic pigments, some physiological aspects, seed yield/plant and oil %. On the other hand, the highest values of head diameter, head circumference, weight 50 seed and crude protein were obtained by control treatment. Meanwhile, the highest values of proline and free amino acid were recorded under higher salinity level (8000 mg/L). On the other hand, all chitosan treatments significantly enhanced growth and productivity of sunflower plant. Also, the obtained data that, chitosan concentration (50 mg/L) recorded the highest values of all the studied growth and yield quantity and quality via enhancing photosynthetic pigments and the studied physiological aspects, as compared with other treatments. As for interaction effect, plants treated with chitosan concentration (50 mg/L) under salinity level (4000 mg/L) recorded the highest growth characters, photosynthetic pigments and IAA. While the interaction between chitosan concentrations (50 mg/L) under salinity level (8000 mg/L) recorded the highest yield characters, except for crude protein (75 mg/L chitosan) in control plants (those plants irrigated with tap water). Conclusion In conclusion, chitosan treatments did not only improve plant growth and productivity but also could enhance the reducing effects of salinity stress on growth and productivity of sunflower plant. The most effective concentrations was 50 mg/L on increasing growth and yield of sunflower plant.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference73 articles.

1. A.O.A.C, 1990. Official Methods of Analysis.20th_edition.Association of Official Analytical Chemists, Arlington, Virginia, U.S.A

2. Abass SM, Mohamed HM (2011) Alleviation of adverse effects of drought stress on common bean (Phaseolus vulgaris L.) by exogenous application of hydrogen peroxide. Bangladesh J Botany 41:75–83

3. Abd Elhamid ME, Sadak MS, Tawfik MM (2018) Glutathione treatment alleviate salinity adverse effects on growth, some biochemical aspects, yield quantity and nutritional value of chickpea plant. Sci Fed J Global Warming 2(2):1–11

4. Abdelhamid MT, Sadak MS, Schmidhalter URS, El-Saady AM (2013) Interactive effects of salinity stress and nicotinamide on physiological and biochemical parameters of faba bean plant. Acta biologica Colombiana 18(3):499–510

5. Ahmed CB, Rouina BB, Sensoy S, Boukhriss M, Abdullah FB (2010) Exogenous proline effects on photosynthetic performance and antioxidant defense system of young olive tree. J Agricult Food Chem 58(7):4216–4222

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3