Zinc-oxide and nano ZnO oxide effects on growth, some biochemical aspects, yield quantity, and quality of flax (Linum uitatissimum L.) in absence and presence of compost under sandy soil

Author:

Sadak Mervat ShamoonORCID,Bakry Bakry Ahmed

Abstract

Abstract Background Nanofertilizers have been provided a new efficient alternative to normal regular fertilizers. Nano-particles can help in increasing reactive points of these nanoparticles, which increases the absorption of these fertilizers in plants. Materials and methods Thus, a field experiment was conducted in sandy soil during two winter seasons of 2016/2017 and 2017/2018 at experimental station of National conditions, El-Behira Governorate-Egypt. The objective of this study was the effect of ZnO as normal chelated micronutrient and ZnO as nanoparticle foliar application at rates of 0, 20, 40, and 60 mg/L, with two rates of compost (0.0 and 3.00 ton/fed) on growth parameters, photosynthetic pigments, yield, and chemical analysis of flax (Linum usitatissimum L cv., Sakha-2) plants. Results The obtained results showed that adding of compost to the sandy soil by 3.0 ton/fed, increased markedly growth parameters (shoot and root length (cm), fresh and dry weights (g), photosynthetic pigments (chlorophyll a, chlorophyll b, carotenoids, and total pigments (μg/g fresh wt)), free amino acids and proline (mg/100 g dry wt), total carbohydrate percentage, yield quantity and quality (technical shoot, fruiting zone lengths and plant height (cm), No. of fruiting branches/plant and No. of capsules/plant, weight of straw (g), weight of 1000 seeds (g), biological yield (kg/fed), seed yield (kg/fed), and straw yield (kg/fed)), oil percentage, and oil yield (kg/fed) compared to control treatments (without compost). Also, the obtained data clarified that applied foliar treatment with normal ZnO with rates 40 mg/L significantly increased the yield and all parameters of flax plant during studied growing seasons. The interaction between compost addition and different concentrations of either ZnO or nano ZnO revealed that different concentrations increased different studied parameters without or with the addition of compost to sandy soil as compared with untreated plants. Conclusion Treatment of flax plant with ZnO and nano ZnO improved the studied growth parameters, biochemical aspects, and consequent yield in the absence and presence of compost.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference69 articles.

1. A.O.A.C., 1990. Official methods of analysis. 20th edition. Association of Official Analytical Chemists, Arlington, Virginia. (No.920.39).

2. Abdel Latef AAH, Abu Alhmad MF, Abdelfattah KE (2016) The possible roles of priming with ZnO nanoparticles in mitigation of salinity stress in lupine (Lupinus termis) plants. J Plant Growth Regul. https://doi.org/10.1007/s00344-016-9618-x

3. Abou-El-Hassan S, Desoky AH (2013) Effect of compost and compost tea on organic production of head lettuce. J Appl Sci Res 9(11):5650–5655

4. Afriyie E, Amoabeng BW (2017) Effect of compost amendment on plant growth and yield of radish (Raphanus sativus L.). J Exp Agric Int 15(2):1–6

5. Ali AF (2005) The role of organic manure and some growth regulators on growth, flowering and bulb production and chemical composition of Iris plants. In: The 6th Arabian Conference of Horticulture Ismalia, Egypt, Orman No, 90

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3