Author:
Suman Patrick R.,Souza Lisiane S.,Kincheski Grasielle C.,Melo Helen M.,Machado Mariana N.,Carvalho Giovanna M. C.,De Felice Fernanda G.,Zin Walter A.,Ferreira Sergio T.
Abstract
Abstract
Background
Considerable evidence indicates that a signaling crosstalk between the brain and periphery plays important roles in neurological disorders, and that both acute and chronic peripheral inflammation can produce brain changes leading to cognitive impairments. Recent clinical and epidemiological studies have revealed an increased risk of cognitive impairment and dementia in individuals with impaired pulmonary function. However, the mechanistic underpinnings of this association remain unknown. Exposure to SiO2 (silica) particles triggers lung inflammation, including infiltration by peripheral immune cells and upregulation of pro-inflammatory cytokines. We here utilized a mouse model of lung silicosis to investigate the crosstalk between lung inflammation and memory.
Methods
Silicosis was induced by intratracheal administration of a single dose of 2.5 mg SiO2/kg in mice. Molecular and behavioral measurements were conducted 24 h and 15 days after silica administration. Lung and hippocampal inflammation were investigated by histological analysis and by determination of pro-inflammatory cytokines. Hippocampal synapse damage, amyloid-β (Aβ) peptide content and phosphorylation of Akt, a proxy of hippocampal insulin signaling, were investigated by Western blotting and ELISA. Memory was assessed using the open field and novel object recognition tests.
Results
Administration of silica induced alveolar collapse, lung infiltration by polymorphonuclear (PMN) cells, and increased lung pro-inflammatory cytokines. Lung inflammation was followed by upregulation of hippocampal pro-inflammatory cytokines, synapse damage, accumulation of the Aβ peptide, and memory impairment in mice.
Conclusion
The current study identified a crosstalk between lung and brain inflammatory responses leading to hippocampal synapse damage and memory impairment after exposure to a single low dose of silica in mice.
Funder
Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro
Conselho Nacional de Desenvolvimento Científico e Tecnológico
National Institute for Translational Neuroscience
Ministério da Saúde/DECIT
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience
Reference55 articles.
1. Ferreira ST, Clarke JR, Bomfim TR, De Felice FG. Inflammation, defective insulin signaling, and neuronal dysfunction in Alzheimer’s disease. Alzheimers Dement. 2014;10(1 Suppl):S76-83.
2. Lyra ESNM, Goncalves RA, Pascoal TA, Lima-Filho RAS, Resende EPF, Vieira ELM, et al. Pro-inflammatory interleukin-6 signaling links cognitive impairments and peripheral metabolic alterations in Alzheimer’s disease. Transl Psychiatry. 2021;11(1):251.
3. You R, Ho YS, Hung CH, Liu Y, Huang CX, Chan HN, et al. Silica nanoparticles induce neurodegeneration-like changes in behavior, neuropathology, and affect synapse through MAPK activation. Part Fibre Toxicol. 2018;15(1):28.
4. Lu R, Kiernan MC, Murray A, Rosner MH, Ronco C. Kidney–brain crosstalk in the acute and chronic setting. Nat Rev Nephrol. 2015;11(12):707–19.
5. Kurella Tamura M, Yaffe K. Dementia and cognitive impairment in ESRD: diagnostic and therapeutic strategies. Kidney Int. 2011;79(1):14–22.
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献