A small peptide antagonist of the Fas receptor inhibits neuroinflammation and prevents axon degeneration and retinal ganglion cell death in an inducible mouse model of glaucoma

Author:

Krishnan Anitha,Kocab Andrew J.,Zacks David N.,Marshak-Rothstein Ann,Gregory-Ksander MeredithORCID

Abstract

Abstract Background Glaucoma is a complex, multifactorial disease where apoptosis, microglia activation, and inflammation have been linked to the death of retinal ganglion cells (RGCs) and axon degeneration. We demonstrated previously that FasL-Fas signaling was required for axon degeneration and death of RGCs in chronic and inducible mouse models of glaucoma and that Fas activation triggered RGC apoptosis, glial activation, and inflammation. Here, we investigated whether targeting the Fas receptor with a small peptide antagonist, ONL1204, has anti-inflammatory and neuroprotective effects in a microbead-induced mouse model of glaucoma. Methods Intracameral injection of microbeads was used to elevate intraocular pressure (IOP) in Fas-deficient (Faslpr) mice and WT C57BL/6J mice that received an intravitreal injection of the Fas inhibitor, ONL1204 (2 μg/1 μl) (or vehicle only), on day 0 or day 7 after microbead injection. The IOP was monitored by rebound tonometry, and at 28 days post-microbead injection, Brn3a-stained RGCs and paraphenylenediamine (PPD)-stained axons were analyzed. The effects of ONL1204 on retinal microglia activation and the expression of inflammatory genes were analyzed by immunostaining of retinal flatmounts and quantitative PCR (qPCR). Results Rebound tonometry showed equivalent elevation of IOP in all groups of microbead-injected mice. At 28 days post-microbead injection, the RGC and axon counts from microbead-injected Faslpr mice were equivalent to saline-injected (no IOP elevation) controls. Treatment with ONL1204 also significantly reduced RGC death and loss of axons in microbead-injected WT mice when compared to vehicle-treated controls, even when administered after IOP elevation. Confocal analysis of Iba1-stained retinal flatmounts and qPCR demonstrated that ONL1204 also abrogated microglia activation and inhibited the induction of multiple genes implicated in glaucoma, including cytokines and chemokines (GFAP, Caspase-8, TNFα, IL-1β, IL-6, IL-18, MIP-1α, MIP-1β, MIP-2, MCPI, and IP10), components of the complement cascade (C3, C1Q), Toll-like receptor pathway (TLR4), and inflammasome pathway (NLRP3). Conclusions These results serve as proof-of-principal that the small peptide inhibitor of the Fas receptor, ONL1204, can provide robust neuroprotection in an inducible mouse model of glaucoma, even when administered after IOP elevation. Moreover, Fas signaling contributes to the pathogenesis of glaucoma through activation of both apoptotic and inflammatory pathways.

Funder

ONL Therapeutics

NIAID

NEI

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience

Cited by 102 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3