Abstract
Abstract
Background
Fluorescent reporter labeling and promoter-driven Cre-recombinant technologies have facilitated cellular investigations of physiological and pathological processes, including the widespread use of the Cx3cr1CreER-Eyfp/wt mouse strain for studies of microglia.
Methods
Immunohistochemistry, Flow Cytometry, RNA sequencing and whole-genome sequencing were used to identify the subpopulation of microglia in Cx3cr1CreER-Eyfp/wt mouse brains. Genetically mediated microglia depletion using Cx3cr1CreER-Eyfp/wtRosa26DTA/wt mice and CSF1 receptor inhibitor PLX3397 were used to deplete microglia. Primary microglia proliferation and migration assay were used for in vitro studies.
Results
We unexpectedly identified a subpopulation of microglia devoid of genetic modification, exhibiting higher Cx3cr1 and CX3CR1 expression than Cx3cr1CreER-Eyfp/wtCre+Eyfp+ microglia in Cx3cr1CreER-Eyfp/wt mouse brains, thus termed Cx3cr1highCre−Eyfp− microglia. This subpopulation constituted less than 1% of all microglia under homeostatic conditions, but after Cre-driven DTA-mediated microglial depletion, Cx3cr1highCre−Eyfp− microglia escaped depletion and proliferated extensively, eventually occupying one-third of the total microglial pool. We further demonstrated that the Cx3cr1highCre−Eyfp− microglia had lost their genetic heterozygosity and become homozygous for wild-type Cx3cr1. Therefore, Cx3cr1highCre−Eyfp− microglia are Cx3cr1wt/wtCre−Eyfp−. Finally, we demonstrated that CX3CL1–CX3CR1 signaling regulates microglial repopulation both in vivo and in vitro.
Conclusions
Our results raise a cautionary note regarding the use of Cx3cr1CreER-Eyfp/wt mouse strains, particularly when interpreting the results of fate mapping, and microglial depletion and repopulation studies.
Funder
Vetenskapsrådet
Barncancerfonden
Cancerfonden
Swedish Government grants to scientists working in health care
Hjärnfonden
Cancer Research KI Translational Seed Funding
the Radiumhemmet Research Funds
the Gunnar and Märta Philipson Foundation
Frimurare Barnhuset Foundation of Stockholm
Karolinska Institute
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献