Abstract
Abstract
Background
Exposure to general anesthesia (GA) during the postnatal period is associated with neuroinflammation and long-term neurocognitive impairment in preclinical and clinical settings. Pyroptosis is a novel type of programmed cell death that, along with inflammation, has been found to play an important role in the mechanism of diverse neurological diseases. However, its roles in GA-induced neuroinflammation and neurocognitive impairment in the developing brain have not been investigated.
Methods
Rats at postnatal day 6 or primary hippocampal neurons at 9 days in vitro received 3% sevoflurane for 2 h daily for three consecutive days. A pharmacological inhibitor of nuclear factor (NF)-κB (BAY 11-7082) was administered to suppress NF-κB activation. Histological and biochemical analyses were performed to assess the pyroptosis as well as neuronal and synaptic damage both in vivo and in vitro. In addition, behavioral tests were performed to evaluate neurocognitive ability in rats.
Results
Repeated sevoflurane exposure activated NF-κB-mediated pyroptosis and neuroinflammation in the hippocampus in developing rats, damaged the neuronal morphology and synaptic integrity, and induced neurocognitive impairment in rats. BAY 11-7082 treatment suppressed the activation of pyroptosis, attenuated the neuronal and synaptic damage, and ameliorated the neurocognitive impairment induced by repeated sevoflurane administration to developing rats.
Conclusions
Repeated sevoflurane GA may induce neuroinflammation and neurocognitive impairment in developing rats via the activation of NF-κB-mediated pyroptosis. Our findings characterize a novel role of pyroptosis as a potential therapeutic target in neuroinflammation after repeated neonatal GA.
Funder
National Natural Science Foundation of China
Science and Technology Plan Project of Changzhou
Publisher
Springer Science and Business Media LLC
Subject
Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience
Reference43 articles.
1. Shen X, Dong Y, Xu Z, Wang H, Miao C, Soriano SG, et al. Selective anesthesia-induced neuroinflammation in developing mouse brain and cognitive impairment. Anesthesiology. 2013;118(3):502–15. https://doi.org/10.1097/ALN.0b013e3182834d77.
2. Shi Y, Wang G, Li J, Yu W. Hydrogen gas attenuates sevoflurane neurotoxicity through inhibiting nuclear factor kappa-light-chain-enhancer of activated B cells signaling and proinflammatory cytokine release in neonatal rats. Neuroreport. 2017;28(17):1170–5. https://doi.org/10.1097/WNR.0000000000000899.
3. Zhao S, Fan Z, Hu J, Zhu Y, Lin C, Shen T, et al. The differential effects of isoflurane and sevoflurane on neonatal mice. Sci Rep. 2020;10(1):19345. https://doi.org/10.1038/s41598-020-76147-6.
4. Wu L, Zhao H, Weng H, Ma D. Lasting effects of general anesthetics on the brain in the young and elderly: "mixed picture" of neurotoxicity, neuroprotection and cognitive impairment. J Anesth. 2019;33(2):321–35. https://doi.org/10.1007/s00540-019-02623-7.
5. Tian Y, Chen KY, Liu LD, Dong YX, Zhao P, Guo SB. Sevoflurane exacerbates cognitive impairment induced by Abeta 1-40 in rats through initiating neurotoxicity, neuroinflammation, and neuronal apoptosis in rat hippocampus. Mediators Inflamm. 2018;2018:3802324.
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献