Empagliflozin targets Mfn1 and Opa1 to attenuate microglia-mediated neuroinflammation in retinal ischemia and reperfusion injury

Author:

Yang Zhenlan,Liu Yidan,Chen Xuhao,Huang Shaofen,Li Yangyang,Ye Guitong,Cao Xu,Su Wenru,Zhuo Yehong

Abstract

Abstract Background Neuroinflammation and mitochondrial dysfunction play crucial roles in retinal ischemia and reperfusion (IR) injury. Recent studies have identified mitochondrial function as a promising target for immunomodulation. Empagliflozin (EMPA), an anti-diabetic drug, has exhibited great potential as both an anti-inflammatory agent and a protector of mitochondrial health. This study aimed to assess the therapeutic efficacy of EMPA in retinal IR injury. Methods To evaluate the protective effects of EMPA, the drug was injected into the vitreous body of mice post-retinal IR. Single-cell RNA sequencing (scRNA-seq) analysis was conducted to uncover the underlying mechanisms, and the results were further validated through in vivo and in vitro experiments. Results EMPA effectively protected retinal ganglion cells (RGCs) from IR injury by attenuating local retinal inflammation. The scRNA-seq analysis revealed that EMPA downregulated the nucleotide-binding domain and leucine-rich repeat containing protein 3 (NLRP3) signaling pathway and restored mitochondrial dynamics by upregulating the expression of mitochondrial fusion-related genes, Mitofusin 1 (Mfn1) and optic atrophy 1 (Opa1). These findings were further corroborated by Western blotting. In vitro experiments provided additional insights, demonstrating that EMPA suppressed lipopolysaccharide (LPS)-induced cell inflammation and NLRP3 inflammasome activation. Moreover, EMPA enhanced mitochondrial fusion, neutralized mitochondrial reactive oxygen species (mtROS), and restored mitochondrial membrane potential (MMP) in BV2 microglia. Notably, genetic ablation of Mfn1 or Opa1 abolished the anti-inflammatory effects of EMPA. Conclusions Our findings highlight the positive contribution of Mfn1 and Opa1 to the anti-inflammatory therapeutic effect of EMPA. By restoring mitochondrial dynamics, EMPA effectively mitigates microglia-mediated neuroinflammation and prevents RGC loss in retinal IR injury.

Funder

Guangzhou Municipal Science and Technology Project

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3