Choroid plexus-selective inactivation of adenosine A2A receptors protects against T cell infiltration and experimental autoimmune encephalomyelitis

Author:

Zheng Wu,Feng Yijia,Zeng Zhenhai,Ye Mengqian,Wang Mengru,Liu Xin,Tang Ping,Shang Huiping,Sun Xiaoting,Lin Xiangxiang,Wang Muran,Li Zhengzheng,Weng Yiyun,Guo Wei,Vakal Sergii,Chen Jiang-fanORCID

Abstract

Abstract Background Multiple sclerosis (MS) is one of the most common autoimmune disorders characterized by the infiltration of immune cells into the brain and demyelination. The unwanted immunosuppressive side effect of therapeutically successful natalizumab led us to focus on the choroid plexus (CP), a key site for the first wave of immune cell infiltration in experimental autoimmune encephalomyelitis (EAE), for the control of immune cells trafficking. Adenosine A2A receptor (A2AR) is emerging as a potential pharmacological target to control EAE pathogenesis. However, the cellular basis for the A2AR-mediated protection remains undetermined. Methods In the EAE model, we assessed A2AR expression and leukocyte trafficking determinants in the CP by immunohistochemistry and qPCR analyses. We determined the effect of the A2AR antagonist KW6002 treatment at days 8–12 or 8–14 post-immunization on T cell infiltration across the CP and EAE pathology. We determined the critical role of the CP-A2AR on T cell infiltration and EAE pathology by focal knock-down of CP-A2AR via intracerebroventricular injection of CRE-TAT recombinase into the A2ARflox/flox mice. In the cultured CP epithelium, we also evaluated the effect of overexpression of A2ARs or the A2AR agonist CGS21680 treatment on the CP permeability and lymphocytes migration. Results We found the specific upregulation of A2AR in the CP associated with enhanced CP gateway activity peaked at day 12 post-immunization in EAE mice. Furthermore, the KW6002 treatment at days 8–12 or 8–14 post-immunization reduced T cell trafficking across the CP and attenuated EAE pathology. Importantly, focal CP-A2AR knock-down attenuated the pathogenic infiltration of Th17+ cells across the CP via inhibiting the CCR6–CCL20 axis through NFκB/STAT3 pathway and protected against EAE pathology. Lastly, activation of A2AR in the cultured epithelium by A2AR overexpression or CGS21680 treatment increased the permeability of the CP epithelium and facilitated lymphocytes migration. Conclusion These findings define the CP niche as one of the primary sites of A2AR action, whereby A2AR antagonists confer protection against EAE pathology. Thus, pharmacological targeting of the CP-A2AR represents a novel therapeutic strategy for MS by controlling immune cell trafficking across CP.

Funder

national natural science foundation of china

National Natural Science Foundation of China

natural science foundation of zhejiang province

national key research and development program of china

wenzhou science and technology project

Publisher

Springer Science and Business Media LLC

Subject

Cellular and Molecular Neuroscience,Neurology,Immunology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3