Controlling the lodging risk of rice based on a plant height dynamic model

Author:

Wu Dong-Hong,Chen Chung-Tse,Yang Ming-Der,Wu Yi-Chien,Lin Chia-Yu,Lai Ming-Hsin,Yang Chin-Ying

Abstract

Abstract Background Rice is a key global food crop. Rice lodging causes a reduction in plant height and crop yield, and rice is prone to lodging in the late growth stage because of panicle initiation. We used two water irrigation modes and four fertilizer application intervals to investigate the relationship between lodging and various cultivation conditions over 2 years. Results Plant height data were collected and combined with aerial images, revealing that rice lodging was closely related to the nitrogen fertilizer content. The aerial images demonstrated that lodging mainly occurred in the fields treated with a high-nitrogen fertilizer, and analysis of variance revealed that plant height was signifi-cantly affected by nitrogen fertilizer. These results demonstrated that rice plant height in the booting stage was significantly positively correlated with the lodging results (r = 0.67) and nega-tively correlated with yield (r = − 0.46). If the rice plant height in the booting stage exceeded 70.7 cm and nitrogen fertilizer was continuously applied, according to the predicted growing curve of plant height, the plant would be at risk of lodging. Results showed more rainfall accumulated in the later stage of rice growth accompanied by strong instantaneous gusts, the risk of lodging in-creased. Conclusion The results provide predictions that can be applied in intelligent production and lodging risk management, and they form the basis of cultivation management and response policies for each growth period.

Funder

Council of Agriculture and the Ministry of Science and Technology

Ministry of Science and Technology

Publisher

Springer Science and Business Media LLC

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3