Study on the treatment of postmenopausal osteoporosis with quercetin in Liuwei Dihuang Pill based on network pharmacology

Author:

Zhu Fuping,Li Wuping,Wang Linhua,Dai Bing,Liu Zongyi,Wu Hang,Deng Ting

Abstract

Abstract Background Liuwei Dihuang Pill (LP) was verified to alleviate postmenopausal osteoporosis (PMOP) development. Nevertheless, the major constituent of LP and the related network pharmacology study remain unexplored. Methods Protein–protein interaction was established to identify the downstream target of LP in PMOP, and the related signaling pathway was investigated by bioinformatics analysis. MC3T3-E1 cells were added to ferric ammonium citrate (FAC) to mimic osteoporosis in vitro. The osteoblasts were identified by Alizarin red staining. Western blot was applied to evaluate protein levels. In addition, Cell Counting Kit-8 (CCK8) assay was applied to assess cell viability, and cell apoptosis was assessed by flow cytometry. Results Quercetin was the major constituent of LP. In addition, quercetin significantly reversed FAC-induced inhibition of osteogenic differentiation in MC3T3-E1 cells. In addition, quercetin notably abolished the FAC-induced upregulation of Bax, Caspase-3, FOS, JUN, TGFB1 and PPARD. In contrast, Bcl-2, p-mTOR/mTOR, p-AKT/AKT and p-PI3K/PI3K levels in MC3T3-E1 cells were reduced by FAC, which was restored by quercetin. Meanwhile, FAC notably inhibited the viability of MC3T3-E1 cells via inducing apoptosis, but this impact was abolished by quercetin. Furthermore, quercetin could reverse pcDNA3.1-FOS-mediated growth of FAC-treated osteoblasts by mediating PI3K/AKT/mTOR signaling. Conclusion Quercetin alleviated the progression of PMOP via activation of PI3K/AKT/mTOR signaling. Hence, this study would shed novel insights into discovering new methods against PMOP.

Funder

Provincial Central Administration Project

Key Project of Hunan Provincial Department of Education

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3