Knockdown of lncRNA LINC00662 suppresses malignant behaviour of osteosarcoma cells via competition with miR-30b-3p to regulate ELK1 expression

Author:

Wang Bin,Xu Zhengfeng,Wang Xiuhui,Xia Shengli,Cai Pan,Wang Minghui,Gao ZhenchaoORCID

Abstract

Abstract Purpose Osteosarcoma is a type of bone malignancy that mainly occurred in teenagers. This investigation is aimed to clarify the effect of long non-coding RNA (lncRNA) LINC00662 on the proliferation, migration, and invasion in osteosarcoma and explore the underlying action mechanisms. Methods The mRNA expression of LINC00662 was determined by real-time quantitative polymerase chain reaction. Cell proliferation, migration, and invasion were evaluated by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, wound healing, and transwell assays, respectively. A dual-luciferase reporter assay was used to validate the target relationships Between microRNA (miR)-30b-3p and LINC00662/ ETS domain-containing protein 1 (ELK1). Western blotting was performed to determine the protein expression of ELK1. Xenograft model was established to evaluate the effects of LINC00662 silencing on tumor growth in vivo. Results LncRNA LINC00662 and ELK1 were significantly increased, while miR-30b-3p was reduced in osteosarcoma tissues. The results of functional experiments indicated that transfection of small hairpin (sh)-LINC00662 and miR-30b-3p mimics repressed the migration, invasion, and proliferation of osteosarcoma cells. LncRNA LINC00662 also appeared to sponge miR-30b-3p in order to affect the expression of ELK1. Simultaneously, there were weak negative correlations between the expression of miR-30b-3p and LINC00662/ELK1 in osteosarcoma tissues. Rescue experiments suggested that ELK1 overexpression and downregulation of miR-30b-3p reversed the suppressive effects of sh-LINC00662 on the cell migration, invasion, and proliferation in osteosarcoma. Conclusions The current study indicated that knockdown of LINC00662 repressed cell migration, invasion, and proliferation through sponging miR-30b-3p to regulate the expression of ELK1 in osteosarcoma. These results may uncover a promising target for the treatment of osteosarcoma.

Funder

Scientific research project of Zhoupu Hospital in 2019

“Top-100 Talent Cultivation Plan” of Shanghai University of Medicine and Health Sciences, Characteristic disease - lumbar instability with degeneration of the elderly

The Featured Clinical Discipline Project of Shanghai Pudong

Shanghai pudong new area health commission leading talent training program funded project

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3