CircTBX5 knockdown modulates the miR-558/MyD88 axis to alleviate IL-1β-induced inflammation, apoptosis and extracellular matrix degradation in chondrocytes via inactivating the NF-κB signaling

Author:

Wei Wei,Mu Hongjie,Cui Qiaoyi,Yu Peng,Liu Tong,Wang Tao,Sheng Lin

Abstract

Abstract Background It has been widely shared that the dysregulation of circular RNA (circRNA) may contribute to the progression of osteoarthritis (OA). OA is characterized by persistent chondrocyte injury. We aimed to clarify the role of circTBX5 in IL-1β-induced chondrocyte injury. Methods The expression of circTBX5, miR-558 and MyD88 mRNA was measured using quantitative real-time PCR (qPCR). Cell viability, proliferation and apoptosis were assessed by CCK-8, EdU or flow cytometry assay. The protein levels of extracellular matrix (ECM)-associated markers, MyD88, IkBα, p65 and phosphorylated IkBα were measured by western blot. The release of inflammatory factors was assessed by ELISA. The targets of circTBX5 were screened by RIP and pull-down assay. The putative binding between miR-558 and circTBX5 or MyD88 was validated by dual-luciferase reporter assay. Results CircTBX5 and MyD88 were enhanced, while miR-558 was downregulated in OA cartilage tissues and IL-1β-treated C28/I2 cells. IL-1β induced C28/I2 cell injury by impairing cell viability and proliferation and promoting cell apoptosis, ECM degradation and inflammatory response, while circTBX5 knockdown alleviated IL-1β induced injury. CircTBX5 bound to miR-558 to regulate IL-1β induced cell injury. In addition, MyD88 was a target of miR-558, and circTBX5 targeted miR-558 to positively regulate MyD88 expression. MiR-558 enrichment attenuated IL-1β induced injury by sequestering MyD88 expression. Moreover, circTBX5 knockdown weakened the activity of NF-κB signaling, while miR-558 inhibition or MyD88 overexpression recovered the activity of NF-κB signaling. Conclusion CircTBX5 knockdown modulated the miR-558/MyD88 axis to alleviate IL-1β induced chondrocyte apoptosis, ECM degradation and inflammation via inactivating the NF-кB signaling pathway.

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,Surgery

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3