Author:
Wei Wei,Mu Hongjie,Cui Qiaoyi,Yu Peng,Liu Tong,Wang Tao,Sheng Lin
Abstract
Abstract
Background
It has been widely shared that the dysregulation of circular RNA (circRNA) may contribute to the progression of osteoarthritis (OA). OA is characterized by persistent chondrocyte injury. We aimed to clarify the role of circTBX5 in IL-1β-induced chondrocyte injury.
Methods
The expression of circTBX5, miR-558 and MyD88 mRNA was measured using quantitative real-time PCR (qPCR). Cell viability, proliferation and apoptosis were assessed by CCK-8, EdU or flow cytometry assay. The protein levels of extracellular matrix (ECM)-associated markers, MyD88, IkBα, p65 and phosphorylated IkBα were measured by western blot. The release of inflammatory factors was assessed by ELISA. The targets of circTBX5 were screened by RIP and pull-down assay. The putative binding between miR-558 and circTBX5 or MyD88 was validated by dual-luciferase reporter assay.
Results
CircTBX5 and MyD88 were enhanced, while miR-558 was downregulated in OA cartilage tissues and IL-1β-treated C28/I2 cells. IL-1β induced C28/I2 cell injury by impairing cell viability and proliferation and promoting cell apoptosis, ECM degradation and inflammatory response, while circTBX5 knockdown alleviated IL-1β induced injury. CircTBX5 bound to miR-558 to regulate IL-1β induced cell injury. In addition, MyD88 was a target of miR-558, and circTBX5 targeted miR-558 to positively regulate MyD88 expression. MiR-558 enrichment attenuated IL-1β induced injury by sequestering MyD88 expression. Moreover, circTBX5 knockdown weakened the activity of NF-κB signaling, while miR-558 inhibition or MyD88 overexpression recovered the activity of NF-κB signaling.
Conclusion
CircTBX5 knockdown modulated the miR-558/MyD88 axis to alleviate IL-1β induced chondrocyte apoptosis, ECM degradation and inflammation via inactivating the NF-кB signaling pathway.
Publisher
Springer Science and Business Media LLC
Subject
Orthopedics and Sports Medicine,Surgery
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献